
Class	6:	Bayesian	Methods

In	this	class	we	will	review	Bayesian	likelihood	
methods	for	solving	statistical	problems,	

determining	the	posterior	probabilities	of	model	
parameters,	and	selecting	between	two	models



At	the	end	of	this	class	you	should	be	able	to	…

• … understand	the	application	of	Bayes’	theorem	in	model-
fitting	and	the	role	of	priors

• … obtain	parameter	values	and	confidence	ranges	via	
likelihood	methods

• … search	parameter	space	with	MCMC	algorithms

• … apply	model	selection	tests	using	the	Bayes	factor	or	
Akaike information	criteria

Class	6:	Bayesian	Methods



Bayesian	Methods

• Recall	from	Class	1	that	Bayesian	statistics	is	a	framework	
that	allows	us	to	assign	probabilities	to	a	model

• It	makes	use	of	conditional	probabilities,	𝑃(𝐴|𝐵),	meaning	
“the	probability	of	𝐴 on	the	condition	that	𝐵 has	occurred”

• Remember	that	𝑃(𝐴|𝐵) ≠ 𝑃(𝐵|𝐴) in	general!
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Bayesian	Methods

• An	important	role	in	Bayesian	statistics	is	played	by	Bayes’	
theorem,	which	can	be	derived	from	elementary	
probability:

• Small	print:	this	formula	can	be	derived	by	just	writing	down	the	joint	
probability	of	both	𝐴 and	𝐵 in	2	ways:

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 	𝑃(𝐴)

𝑃(𝐵)

𝑃(𝐴 ∩ 𝐵) = 𝑃 𝐴 𝐵 	𝑃 𝐵 = 𝑃 𝐵 𝐴 	𝑃(𝐴)



Bayesian	Methods

• The	chance	of	a	certain	medical	test	being	positive	is	90%,	if	a	
patient	has	disease	𝐷.		1%	of	the	population	have	the	disease,	
and	the	test	records	a	false	positive	5%	of	the	time.		If	you	
receive	a	positive	test,	what	is	your	probability	of	having	𝐷?

• We	are	told:	𝑃 + 𝐷 = 0.9,	𝑃 𝐷 = 0.01,	𝑃 + no	𝐷 = 0.05

• We	want	to	know:	𝑃(𝐷|+)

• Bayes’	Theorem:	𝑃 𝐷 + = 4 5|6 	4(6)
4(5)

= 4 5|6 	4(6)
4 5|6 	4 6 	5	4 5|78	6 	4(78	6)

• Substituting	in	the	data:	𝑃 𝐷 + = 9.:×9.9<
9.:×9.9<59.9=×9.::

= 0.15

• Interpretation:	although	the	test	is	correct	90%	of	the	time,	the	probability	
of	having	𝐷 after	a	positive	test	is	only	15%.		This	is	because	only	a	small	
fraction	of	the	population	have	the	disease.



Bayesian	Methods

• A	Frequentistmight	argue	“either	the	person	has	the	disease	
or	not	– it	is	meaningless	to	apply	probability	in	this	way”

• A	Bayesianmight	argue	“there	is	a	prior	probability	of	1%
that	the	person	has	the	disease.		This	probability	should	be	
updated	in	the	light	of	the	new	data	using	Bayes’	theorem”



Bayesian	Methods

• Bayes’	theorem	can	be	usefully	re-written	for	science	as:

𝑃 model data =
𝑃 data model 	𝑃(model)

𝑃(data)

Likelihood function
of	the	data	given	

the	model

Prior	probability
of	the	model

Posterior	probability
of	the	model	in	light	

of	the	data

Evidence	[can	typically	be	
absorbed	into	the	

normalization	of	the	posterior]



Role	of	the	prior

• Bayesian	statistics	cannot	determine	probabilities	of	a	
model	without	assigning	a	prior	probability

• The	importance	of	the	prior	probability	is	both	the	strong	
and	weak	point	of	Bayesian	statistics

• A	Bayesianmight	argue:	“the	prior	probability	is	a	logical	
necessity	when	assessing	the	probability	of	a	model.		It	
should	be	stated,	and	if	it’s	unknown	you	can	use	an	
uninformative	(wide)	prior”

• A	Frequentistmight	argue	“setting	the	prior	is	subjective	–
two	experiments	could	use	the	same	data	to	come	to	two	
different	conclusions,	just	by	taking	different	priors”



Role	of	the	prior

• Let’s	take	the	example	of	fitting	a	parameter	𝑎 to	some	
data.		Bayes’	Theorem	now	reads:

• We	do	not	need	the	denominator,	since	we	will	normalize	
the	posterior	𝑃 𝑎 data such	that	∫𝑃 𝑎 data 	𝑑𝑎 = 1�

�

• In	the	absence	of	other	information,	a	uniform	(or	
constant)	prior is	often	assumed	for	𝑃(𝑎).		This	is	
effectively	equivalent	to	the	fitting	range	of	a	parameter

• Assuming	Gaussian	variables,	the	likelihood 𝑃 data 𝑎 is:

𝑃 𝑎 data ∝ 𝑃 data 𝑎 	𝑃(𝑎)

𝑷 𝐝𝐚𝐭𝐚 𝒂 ∝ 𝒆P𝝌𝟐/𝟐 Hence:	𝑃(𝑎|data) ∝ 𝑒PUV/W



Posteriors	and	confidence	limits
• We	can	use	the	posterior	
probability	distribution	𝑃(𝑎) to	
determine	summary	statistics	
and	confidence	intervals	for	
the	parameter	𝑎:

• Mean:	𝜇Y = ∫ 𝑎	𝑃 𝑎 	𝑑𝑎Z
PZ

• Variance:
𝜎YW = ∫ 𝑎 − 𝜇Y W	𝑃 𝑎 	𝑑𝑎Z

PZ

• [Small	print:	only	if	the	probability	
distribution	is	Gaussian	is	the	mean	
equal	to	the	best-fitting	value,	and	
the	standard	deviation	equal	to	the	
68% confidence	region]



Posteriors	and	confidence	limits

• For	a	general	probability	distribution,	we	can	determine	the	
confidence	intervals	by	integration:

_ 𝑃 𝑎
Y`ab

PZ

𝑑𝑎 = 0.16					 _ 𝑃 𝑎

Ybac

Y`ab

𝑑𝑎 = 0.68					 _ 𝑃 𝑎
Z

Ybac

𝑑𝑎 = 0.16

16%	area 16%	area

68%	area

𝑎def 𝑎feg



Marginalization

• Now	suppose	we	have	determined	the	2D	posterior	probability	
distribution	of	a	2-parameter	fit,	PWi(a, b)

• What	is	the	probability	distribution	for	parameter	𝑎,	
considering	all	possible	values	of	parameter	𝑏? This	is	known	
as	marginalization of	parameter	𝑏

• Marginalization	can	be	performed	by	summing	(integrating)	
over	one	axis	of	the	probability	distribution:

• [Small	print:	if	𝑃W6(𝑎, 𝑏) is	normalized,	then	𝑃<6 𝑎 will	also	be	normalized]

𝑃<6 𝑎 =m𝑃W6(𝑎, 𝑏)
�

d



• Let’s	apply	these	methods	to	our	example	from	Class	3,	
fitting	a	straight	line	𝑦 = 𝑎𝑥 + 𝑏 to	some	data…

Use	of	likelihood	for	parameter	fitting



• We	determine	the	values	of	𝜒W over	a	grid	of	(𝑎, 𝑏) and	
convert	to	2D	probability	𝑃(𝑎, 𝑏) ∝ 𝑒PUV/W

Use	of	likelihood	for	parameter	fitting



• Then	we	marginalize	to	obtain	the	posterior	probability	
distributions	for	each	parameter,	𝑃(𝑎) and		𝑃 𝑏 …

Use	of	likelihood	for	parameter	fitting



• By	integrating	under	these	distributions,	we	identify	the	
68% confidence	regions	…

Use	of	likelihood	for	parameter	fitting



Supernova	cosmology	(continued)

• Let’s	return	to	the	same	supernova	distance-redshift	dataset	
we	were	using	in	Class	3:

• Convert	the	𝜒W values	
into	a	joint	2D	probability	
distribution	in	 Ωr,Ωs

• Marginalize	this	
probability	distribution	to	
obtain	the	1D	posterior	
probability	distributions	
for	Ωr and	Ωs

• Determine	the	68%	
confidence	regions	for	
Ωr and	Ωs



Monte	Carlo	Markov	Chains

• The	grid	method	becomes	inefficient	as	the	number	of	
parameters	increases.		A	powerful	alternative	is	to	generate	a	
Monte	Carlo	Markov	Chain (MCMC)	in	the	parameter	space

• There	are	various	algorithms	to	do	this	such	as	python	emcee (we	won’t	
go	into	details	here),	but	the	end	result	is	a	“chain”	(distribution	of	
parameter	values)	which	samples	the	underlying	probability	distribution

Image	credit:	
www.essenceps.com

Image	credit:	
www.newton.ac.uk



Monte	Carlo	Markov	Chains

• Here	is	a	worked	example	of	using	python’s	emcee	algorithm	
to	sample	the	probability	distribution	of	the	straight-line	fit:		



Supernova	cosmology	(continued)

• Let’s	return	to	the	same	supernova	distance-redshift	dataset	
again:

• Run	an	MCMC	
analysis	for	
parameters	 Ωr,Ωs

• Determine	the	68%	
confidence	regions	
for	Ωr and	Ωs



Model	selection

• Since	Bayesian	statistics	is	related	to	the	probability	of	
models,	it	allows	us	to	perform	model	selection

• A	common	example:	how	many	model	parameters	does	a	
dataset	justify	including	in	a	fit?



• In	general,	given	models	𝑀< (parameter	𝑝<) and	𝑀W
(parameter	𝑝W) and	a	dataset	𝐷,	we	can	determine	the	
Bayes	factor:	

• The	size	of	𝐾 quantifies	how	strongly	we	can	prefer	one	
model	to	another,	e.g.	the	Jeffreys scale:

𝐾 =
𝑃(𝑀<|𝐷)
𝑃(𝑀W|𝐷)

=
∫𝑑𝑝<	𝑃(𝐷|𝑝<)
�
� 𝑃(𝑝<)
∫ 𝑑𝑝W	𝑃(𝐷|𝑝W)
�
� 𝑃(𝑝W)

𝑲 Strength	of	evidence

1 − 3 “barely	worth mentioning”

3 − 10 “substantial”

10 − 30 “strong”

> 30 “very	strong”

Model	selection



Model	selection

• This	quantity	is	usually	difficult	to	compute,	and	we	can	
instead	use	an	approximation to	this	ratio

• A	common	approach	is	to	calculate	the	Akaike information	
criteria	for	each	model:

• This	penalizes	models	with	more	parameters	(and	the	final	
term	corrects	for	sample	size)

• The	model	with	the	smaller	value	of	𝑨𝑰𝑪 is	preferred	[the	
likelihood	ratio	is	𝑒(}~��P}~�V)/W]

𝐴𝐼𝐶 = 𝜒��7W + 2𝑝 +
2𝑝(𝑝 + 1)
𝑁 − 𝑝 − 1

𝑝 = number	of	parameters
𝑁 = number	of	bins



Flat	or	curved	Universe?

• Let’s	return	to	the	same	supernova	distance-redshift	dataset	
again:

• Compute	the	Akaike
information	criteria	
for	a	flat	model	
(where	Ωr + Ωs =
1) and	a	curved	
model	(where	Ωr,	
Ωs can	take	any	
value).		Which	model	
is	preferred,	by	this	
metric?



Summary

At	the	end	of	this	class	you	should	be	able	to	…

• … understand	the	application	of	Bayes’	theorem	in	model-
fitting	and	the	role	of	priors

• … obtain	parameter	values	and	confidence	ranges	via	
likelihood	methods

• … search	parameter	space	with	MCMC	algorithms

• … apply	model	selection	tests	using	the	Bayes	factor	or	
Akaike information	criteria


