Class 5: Error Estimates

In this class we will review methods to
determine statistical errors by re-sampling data,
Monte Carlo simulations or error propagation




Class 5: Error Estimates

At the end of this class you should be able to ...
e ...understand the definition of an error range

* ... generate errors through re-sampling data using bootstrap
or jack-knife procedures

e ... propagate errors in different quantities in linear or non-
linear combinations

... use Fisher matrices to forecast parameter errors

... model errors using Monte Carlo simulations



What is an error?

* |n science we all need to determine
the errors in our measurements

* What does a fll“atemir;t”such as “Hy = Al Research
70+ 5kms™ Mpc™” mean? -
To err
* It almost never means, “H, has a value ‘JS human'
between 65 and 75” O
* |t almost always means, “there is 68%
probability that H, lies in the £
confidence region 65 < Hy < 75” %
) - b
* |t often means, “the probability — Sfee]

distribution for Hyy is a Gaussian with
mean u = 70 andstddevo =5



Statistical versus systematic errors
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 Statistical (or random) errors are due to noise fluctuations
in our data, which are reduced by collecting more data

» Systematic errors are consistent offsets due to incorrect
calibration of our measurements, which are not reduced by
collecting more data

* We focus here on estimating statistical errors in data



Error estimation

e Often we have no analytic model for the statistics we
estimate from our data. However, we can still determine
errors in these statistics using approximate sampling
procedures

* The basicidea is to build up many “statistical realizations”
of the data by random re-sampling, and use the scatter
across these realizations to estimate the error

* We will consider here the jack-knife procedure, bootstrap
procedure and Monte Carlo simulations



Jack-knife errors

* The jack-knife procedure allows us to estimate the error in
a statistic by re-sampling the data (without replacement)

* Given a dataset with N entries (x4, X5, X3, ..., Xy ), We
create N separate datasets, deleting 1 entry in turn
Dataset 1 —delete x; - D; = (x5, X3, ..., Xy)
Dataset 2 — delete x, — D, = (x4, X3, ..., Xp)

* We measure the statistic for each of these datasets (D4, D,
..., Dy), creating N measurements (51, S», ..., Sy)

* The erroris given by: | JK error = +/N — 1 X std dev of S;

e [Small print: The factor VN — 1 is required since the S; are correlated
with each other, given that the datasets D; all significantly overlap.]



Jack-knife errors

e Let’s apply this procedure to the problem of fitting the
straight line from Class 3. Here are the 10 jack-knife samples:

Re-sample 1
44a=0.31b=0.19

Re-sample 5
41a=0.27 b=0.47
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Re-sample 9
41a=0.26 b=0.47

{a=0.24 b=0.63
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4a=0.27 b=0.39

{a=0.27 b=0.43

Re-sample 2
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Re-sample 6
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Re-sample 10

4a=0.27 b=0.41 4 12a=0.27 b=0.45

{a=0.29 b=0.45 4 12a=0.26 b=0.46

Re-sample 3 Re-sample 4

Re-sample 7 Re-sample 8

0 0 5 10

(Each of these samples
leaves out one of the data
points in turn.)



Jack-knife errors

* Here are the best fits of (a, b) to each of those samples,
compared to the original y* contours:
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Jack-knife errors

* |n some situations, the jack-knife samples could be created
by deleting regions or groups of points, not individual points
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* [Small print: this could be because each portion of the dataset, deleted
in turn, should be statistically independent for a reliable jack-knife error.]



Bootstrap errors

* The bootstrap procedure is another method for estimating

errors by re-sampling the data

* |f we have N data points, the procedure is to repeatedly
draw samples of N points at random, with replacement

* Hence, the same point can appear multiple times in each

bootstrap sample!

Bootstrap re-samples of
(0,1,2,3,4,5,6,7,8,9):

[9260987928]
[7134359257]
[7914951384]
[9220920502]
[869005656 6]
[1830058826]
[4194663045]
[0876766337]
[1277575027]
[5493705127]



Bootstrap errors

* The bootstrap procedure is another method for estimating
errors by re-sampling the data

* |f we have N data points, the procedure is to repeatedly
draw samples of N points at random, with replacement

* Hence, the same point can appear multiple times in each
bootstrap sample!

* As with the jack-knife error, we measure the statistic for
each of these bootstrap datasets (which can number
Nsamp > N this time), creating measurements S;

« The bootstrap error = the standard deviation of §;
(no extra scaling factors this time)



Bootstrap errors

e Let’s apply this approach to the straight-line fit. Here are
the first 12 of 1000 bootstrap re-samples:

Re-sample 1
44a=0.16 b=0.77

Re-sample 5
44a=0.28 b=0.50
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Re-sample 9

{a=0.24 b=0.74

{a=0.24 b=0.58

{a=0.27 b=0.28

Re-sample 2

Re-sample 3

Re-sample 4

4 {a=0.29 b=0.15

{a=0.28 b=0.46
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Re-sample 6

Re-sample 7
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Re-sample 8

4 {a=0.20 b=0.54
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{a=0.27 b=0.37
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Re-sample 10
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Re-sample 11
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Re-sample 12

{a=0.33 b=0.13

(I slightly offset
the points, so you
can see some are
appearing more
than once in each
sample.)



Bootstrap errors

* Here are the best fits of (a, b) for each of the 1000
bootstrap re-samples, compared to the original ¥ contours:
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The Hubble parameter (continued)

* In this Activity we will return to our previous analyses of
Hubble and Lemaitre’s distance-velocity datasets and
determine bootstrap errors on our measurements

* Find the bootstrap
error in the correlation
coefficient

* Find the bootstrap
error in the slope H
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 How do these compare
to your previous
measurements?
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The Hubble parameter (continued)

* Bootstrap determination of the correlation coefficient errors:

90Bootstrap resamples of distance-velocity data
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The Hubble parameter (continued)

* Bootstrap determination of the errors in the slope:

60Bootstrap resamples of distance-velocity data

I Lemaitre
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Combining and propagating errors

A common situation in statistical analysis: we have

measurements and errors of some variables. What is the
error in a function of those variables?

* First example: a linear function of independent variables
(x,y) with coefficients (a, b):

z=ax+by
* The variances combine as:

Var(z) = a* Var(x) + b* Var(y)

« [Why? Consider Var(z) = (z?) — (z)? = ((ax + by)?) — (a{x) +
b(y))?* = a*(x?) + 2ab{xXy) + b*(y*) — a®(x)* — 2ab{x)(y) —
b%(y)? = a? Var(x) + b? Var(y)]



Combining and propagating errors

* Now: a non-linear function of a single variable x:
z=f(x)

* An approximation of the propagated error at x = x is:

O-Z dx (x o xO) O-x

e [Small print: this approximation uses the chain rule and assumes the
derivative df /dx is approximately constant across o]

* A non-linear function of 2 independent variables, z = f(x, y):
2 2

Var(z) = (%) Var(x) + (gf}) Var(y)



Combining and propagating errors

* A galaxy of absolute magnitude M = —20 is observed to
have an apparent magnitude m = 20.0 + 0.2. Whatis
the luminosity distance D; in Mpc, and its error?
[Assume m — M = 5log,o D; + 25]

* The total mass of a binary star system (in M) is given by
Kepler’s law M = a3/P?, where a is the mean separation
(in A.U.) and P is the period (in years). The a Centauri
system has a period of P = 79.9 4+ 1.0 years and mean

separation a = 23.7 + 1.0 A.U. What is the total mass
and error?



Fisher matrix

* The Fisher matrix is a mathematical technique to propagate
the statistical errors in a dataset, to the errors in the model
parameters describing the dataset. The matrix is given by:

a’mk 1 (?’mk

F.: =
7 L ap of 3y

~——_| O isthe errorin
N data point k
[, ] label the model

parameters p;, SO dm, /0p; is the

the Fisher matrix k labels the N data partial derivative of

dimension is points dy, so this the model at point

NparXNpar sum is over N terms k, with respect to
the parameter p;

e [Small print: assumes Gaussian errors and uncorrelated data points.]



Let’s evaluate this for the example of fitting a straight line,

Lj
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6pl- O'Ig 0p]

y = ax + b at N positions xj,

There are 2 parameters, p; = (a, b)

The model ism;, = ax; + b, so

The Fisher matrix is hence:
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We have x;, = (0.5,1.5, ..., 9.5) and g5, = 0.5, so we can
. (1330 200
evaluate the above matrixto F = ( 200 40 )

The covariance matrix of the parameters is then given by
the inverse of the Fisher matrix:
Errorinp; = /Cq1

C=F1 Error in p, = /Cys
_ ¢ 0.003 —0.015
For our example, C = (_0.015 0.101 ) hence the

forecast errors are 6, = /C;; = 0.05and g, = /C,, = 0.32

We have propagated the errors theoretically, without
needing to perform any re-sampling



Monte Carlo simulations

* A Monte Carlo simulation is a computer model of an
experiment in which many random realizations of the
results are created and analysed like the real data

* This allows us to determine the errors in our
measurements, as the standard deviation of the fitted
parameters over the realizations

“many realizations
of an experiment”




The Hubble parameter (continued)

* Run a Monte Carlo simulation of Hubble’s distance-redshift

investigation, and hence determine the errorin H
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At the end of this class you should be able to ...

e ...understand the definition of an error range

... generate errors through re-sampling data using bootstrap
or jack-knife approaches

e ... propagate errors in different quantities in linear or non-
linear combinations

... use Fisher matrices to forecast parameter errors

... model errors using Monte Carlo simulations



