
Class	5:	Error	Estimates

In	this	class	we	will	review	methods	to	
determine	statistical	errors	by	re-sampling	data,	
Monte	Carlo	simulations	or	error	propagation



At	the	end	of	this	class	you	should	be	able	to	…

• … understand	the	definition	of	an	error	range

• … generate	errors	through	re-sampling	data	using	bootstrap	
or	jack-knife	procedures

• … propagate	errors	in	different	quantities	in	linear	or	non-
linear	combinations

• … use	Fisher	matrices	to	forecast	parameter	errors

• … model	errors	using	Monte	Carlo	simulations

Class	5:	Error	Estimates



What	is	an	error?

• In	science	we	all	need	to	determine	
the	errors	in	our	measurements

• What	does	a	statement	such	as	“𝐻" =
70 ± 5	𝑘𝑚	𝑠,-	𝑀𝑝𝑐,-”	mean?

• It	almost	never	means,	“𝐻" has	a	value	
between	65 and	75”

• It	almost	always	means,	“there	is	68%	
probability	that	𝐻" lies	in	the	
confidence	region	65 < 𝐻" < 75”

• It	often	means,	“the	probability	
distribution	for	𝐻" is	a	Gaussian	with	
mean	𝜇 = 70 and	std dev	𝜎 = 5



Statistical	versus	systematic	errors

• Statistical	(or	random)	errors	are	due	to	noise	fluctuations	
in	our	data,	which	are	reduced	by	collecting	more	data

• Systematic	errors	are	consistent	offsets	due	to	incorrect	
calibration of	our	measurements,	which	are	not	reduced	by	
collecting	more	data

• We	focus	here	on	estimating	statistical	errors in	data

Statistical	error

Systematic	errorImage	credit:
ori.hhs.gov



Error	estimation

• Often	we	have	no	analytic	model	for	the	statistics	we	
estimate	from	our	data.		However,	we	can	still	determine	
errors	in	these	statistics	using	approximate	sampling	
procedures

• The	basic	idea	is	to	build	up	many	“statistical	realizations”	
of	the	data	by	random	re-sampling,	and	use	the	scatter	
across	these	realizations to	estimate	the	error

• We	will	consider	here	the	jack-knife	procedure,	bootstrap	
procedure and	Monte	Carlo	simulations



Jack-knife	errors

• The jack-knife	procedure allows	us	to	estimate	the	error	in	
a	statistic	by	re-sampling	the	data	(without	replacement)

• Given	a	dataset	with	𝑁 entries	(𝑥-, 𝑥9,	𝑥:,	…,	𝑥;),	we	
create	𝑵 separate	datasets,	deleting	1	entry	in	turn

• We	measure	the	statistic	for	each	of	these	datasets	(𝐷-, 𝐷9,	
…,	𝐷;),	creating	𝑁 measurements	(𝑆-, 𝑆9,	…,	𝑆;)

• The	error	is	given	by:

• [Small	print:	The	factor	 𝑁 − 1� is	required	since	the	𝑆B are	correlated	
with	each	other,	given	that	the	datasets	𝐷B all	significantly	overlap.]

Dataset	1	– delete	𝒙𝟏 – 𝑫𝟏 = (𝒙𝟐,	𝒙𝟑,	…,	𝒙𝑵)
Dataset	2	– delete	𝒙𝟐 – 𝑫𝟐 = (𝒙𝟏,	𝒙𝟑,	…,	𝒙𝑵)

JK	error	= 𝑁 − 1� 	×	std	dev	of	𝑆B



Jack-knife	errors

• Let’s	apply	this	procedure	to	the	problem	of	fitting	the	
straight	line	from	Class	3.		Here	are	the	10	jack-knife	samples:

(Each	of	these	samples	
leaves	out	one	of	the	data	
points	in	turn.)



Jack-knife	errors

• Here	are	the	best	fits	of	 𝑎, 𝑏 to	each	of	those	samples,	
compared	to	the	original	𝜒9 contours:

𝜒9 contours	for	(1,2,3)-𝜎

Fits	to	10	jack-knife	re-
samples	(more	compact	
due	to	 𝑁 − 1� factor)

Original	error:	𝜎S = 0.05,	𝜎U = 0.33

Jack-knife	estimate:	𝜎S = 0.05,	𝜎U = 0.32



Jack-knife	errors

• In	some	situations,	the	jack-knife	samples	could	be	created	
by	deleting	regions or	groups	of	points,	not	individual	points

• [Small	print:	this	could	be	because	each	portion	of	the	dataset,	deleted	
in	turn,	should	be	statistically	independent	for	a	reliable	jack-knife	error.]

100	jack-knife	
samples	can	be	
created	by	deleting	
the	points	inside	
each	region	in	turn



Bootstrap	errors

• The bootstrap	procedure	is	another	method	for	estimating	
errors	by	re-sampling	the	data

• If	we	have	𝑁 data	points,	the	procedure	is	to	repeatedly	
draw	samples	of	𝑵 points	at	random,	with	replacement

• Hence,	the	same	point	can	appear	multiple	times	in	each	
bootstrap	sample!

Bootstrap	re-samples	of
(0,1,2,3,4,5,6,7,8,9):

[9	2	6	0	9	8	7	9	2	8]
[7	1	3	4	3	5	9	2	5	7]
[7	9	1	4	9	5	1	3	8	4]
[9	2	2	0	9	2	0	5	0	2]
[8	6	9	0	0	5	6	5	6	6]
[1	8	3	0	0	5	8	8	2	6]
[4	1	9	4	6	6	3	0	4	5]
[0	8	7	6	7	6	6	3	3	7]
[1	2	7	7	5	7	5	0	2	7]
[5	4	9	3	7	0	5	1	2	7]



Bootstrap	errors

• The bootstrap	procedure	is	another	method	for	estimating	
errors	by	re-sampling	the	data

• If	we	have	𝑁 data	points,	the	procedure	is	to	repeatedly	
draw	samples	of	𝑵 points	at	random,	with	replacement

• Hence,	the	same	point	can	appear	multiple	times	in	each	
bootstrap	sample!

• As	with	the	jack-knife	error,	we	measure	the	statistic	for	
each of	these	bootstrap	datasets	(which	can	number	
𝑁XYZ[ ≫ 𝑁 this	time),	creating	measurements	𝑆B

• The	bootstrap	error	=	the	standard	deviation	of	𝑆B
(no	extra	scaling	factors	this	time)



Bootstrap	errors

• Let’s	apply	this	approach	to	the	straight-line	fit.		Here	are	
the	first	12	of	1000	bootstrap	re-samples:

(I	slightly	offset	
the	points,	so	you	
can	see	some	are	
appearing	more	
than	once	in	each	
sample.)



Bootstrap	errors

• Here	are	the	best	fits	of	(𝑎, 𝑏) for	each	of	the	1000	
bootstrap	re-samples,	compared	to	the	original	𝜒9 contours:

Original	error:	𝜎S = 0.05,	𝜎U = 0.33

Bootstrap	estimate:	𝜎S = 0.05,	𝜎U = 0.25

𝜒9 contours	for	(1,2,3)-𝜎

Fits	to	1000	bootstrap	re-
samples	(approximation	to	
underlying	distribution)



• In	this	Activity	we	will	return	to	our	previous	analyses	of	
Hubble	and	Lemaitre’s	distance-velocity	datasets	and	
determine	bootstrap	errors	on	our	measurements

• Find	the	bootstrap	
error	in	the	correlation	
coefficient

• Find	the	bootstrap	
error	in	the	slope	𝑯𝟎

• How	do	these	compare	
to	your	previous	
measurements?	

The	Hubble	parameter	(continued)



The	Hubble	parameter	(continued)

• Bootstrap	determination	of	the	correlation	coefficient	errors:



The	Hubble	parameter	(continued)

• Bootstrap	determination	of	the	errors	in	the	slope:



Combining	and	propagating	errors

• A	common	situation	in	statistical	analysis:	we	have	
measurements	and	errors	of	some	variables.		What	is	the	
error	in	a	function	of	those	variables?

• First	example:	a	linear	function	of	independent	variables	
(𝑥, 𝑦) with	coefficients	(𝑎, 𝑏):

• The	variances	combine	as:

• [Why? Consider	Var 𝑧 = 𝑧9 − 𝑧 9 = 𝑎𝑥 + 𝑏𝑦 9 − (𝑎 𝑥 +
𝑏 𝑦 )9 = 𝑎9 𝑥9 + 2𝑎𝑏 𝑥 𝑦 + 𝑏9 𝑦9 − 𝑎9 𝑥 9 − 2𝑎𝑏 𝑥 𝑦 −
𝑏9 𝑦 9 = 𝑎9	Var 𝑥 + 𝑏9	Var(𝑦)]

𝑧 = 𝑎	𝑥 + 𝑏	𝑦

Var 𝑧 = 𝑎9	Var 𝑥 + 𝑏9	Var(𝑦)



Combining	and	propagating	errors

• Now:	a	non-linear	function	of	a	single	variable 𝑥:

• An	approximation	of	the	propagated	error	at	𝑥 = 𝑥" is:

• [Small	print:	this	approximation	uses	the	chain	rule	and	assumes	the	
derivative	𝑑𝑓/𝑑𝑥 is	approximately	constant	across	𝜎j]

• A	non-linear	function	of	2	independent	variables,	𝑧 = 𝑓(𝑥, 𝑦):

𝑧 = 𝑓(𝑥)

𝜎k =
𝑑𝑓
𝑑𝑥 (𝑥 = 𝑥") 	𝜎j

Var 𝑧 =
𝜕𝑓
𝜕𝑥

9
Var 𝑥 +

𝜕𝑓
𝜕𝑦

9
Var(𝑦)



• A	galaxy	of	absolute	magnitude	𝑀 = −20 is	observed	to	
have	an	apparent	magnitude	𝑚 = 20.0 ± 0.2.		What	is	
the	luminosity	distance	𝐷m in	Mpc,	and	its	error?					
[Assume	𝑚 −𝑀 = 5 log-" 𝐷m + 25]

• The	total	mass	of	a	binary	star	system	(in	𝑀⨀)	is	given	by	
Kepler’s	law	𝑀 = 𝑎:/𝑃9,	where	𝑎 is	the	mean	separation	
(in	A.U.)	and	𝑃 is	the	period	(in	years).		The	𝛼 Centauri	
system	has	a	period	of	𝑃 = 79.9 ± 1.0 years	and	mean	
separation	𝑎 = 23.7 ± 1.0 A.U.		What	is	the	total	mass	
and	error?

Combining	and	propagating	errors



Fisher	matrix

• The	Fisher	matrix	is	a	mathematical	technique	to	propagate	
the	statistical	errors	in	a	dataset,	to	the	errors	in	the	model	
parameters	describing	the	dataset.		The	matrix	is	given	by:

• [Small	print:	assumes	Gaussian	errors	and	uncorrelated	data	points.]	

𝐹Bu =v
𝜕𝑚w
𝜕𝑝B
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𝑖, 𝑗 label	the	model	
parameters	𝑝B,	so	
the	Fisher	matrix	
dimension	is	
𝑁zS{×𝑁zS{

𝑘 labels	the	𝑁 data	
points	𝑑w,	so	this	
sum	is	over	𝑁 terms

𝜕𝑚w/𝜕𝑝B is	the	
partial	derivative	of	
the	model	at	point	
𝑘,	with	respect	to	
the	parameter	𝑝B

𝜎w is	the	error	in	
data	point	𝑘



Fisher	matrix

• Let’s	evaluate	this	for	the	example	of	fitting	a	straight	line,	
𝑦 = 𝑎𝑥 + 𝑏 at	𝑁 positions	𝑥w

• There	are	2	parameters,	𝑝B = (𝑎, 𝑏)

• The	model	is	𝑚w = 𝑎𝑥w + 𝑏,	so	
|}~
|z�

= 𝑥w and	
|}~
|z�

= 1

• The	Fisher	matrix	is	hence:
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Fisher	matrix

• We	have	𝑥w = (0.5, 1.5, … , 9.5) and	𝜎w = 0.5,	so	we	can	
evaluate	the	above	matrix	to	𝐹 = 1330 200

200 40

• The	covariance	matrix	of	the	parameters	is	then	given	by	
the	inverse	of	the	Fisher	matrix:

• For	our	example,	𝐶 = 0.003 −0.015
−0.015 0.101 hence	the	

forecast	errors	are	𝜎S = 𝐶--
� = 0.05 and	𝜎U = 𝐶99

� = 0.32

• We	have	propagated	the	errors	theoretically,	without	
needing	to	perform	any	re-sampling

𝐶 = 𝐹,-
Error	in	𝑝- = 𝐶--

�

Error	in	𝑝9 = 𝐶99
�



Monte	Carlo	simulations

• A	Monte	Carlo	simulation	is	a	computer	model	of	an	
experiment	in	which	many	random	realizations	of	the	
results	are	created	and	analysed	like	the	real	data

• This	allows	us	to	determine	the	errors	in	our	
measurements,	as	the	standard	deviation	of	the	fitted	
parameters	over	the	realizations

“many	realizations	
of	an	experiment”



• Run	a	Monte	Carlo	simulation	of	Hubble’s	distance-redshift	
investigation,	and	hence	determine	the	error	in	𝐻"

The	Hubble	parameter	(continued)



Summary

At	the	end	of	this	class	you	should	be	able	to	…

• … understand	the	definition	of	an	error	range

• … generate	errors	through	re-sampling	data	using	bootstrap	
or	jack-knife	approaches

• … propagate	errors	in	different	quantities	in	linear	or	non-
linear	combinations

• … use	Fisher	matrices	to	forecast	parameter	errors

• … model	errors	using	Monte	Carlo	simulations


