
Class	4:	Regression

In	this	class	we	will	explore	how	to	model	an	
outcome	variable	in	terms	of	input	variable(s)	
using	linear	regression,	principal	component	

analysis	and	Gaussian	processes



At	the	end	of	this	class	you	should	be	able	to	…

• … generate	a	least-squares	regression	line	to	a	dataset

• … handle	cases	with	errors	in	both	co-ordinates

• … perform	a	principal	component	analysis	on	a	set	of	
variables

• … construct	Gaussian	Process	models	for	interpolation

Class	4:	Regression



Regression

• Regression describes	any	statistical	method	which	
determines	a	relationship	between	a	dependent (outcome)	
variable	𝑦 and	independent (predictor)	variable(s)	𝑥
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Regression

• In	linear	regression we	suppose	the	relationship	is	a	straight	
line;	a	standard	method	of	determining	that	line	is	to	
minimize	the	residuals	between	it	and	the	points:
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Least-squares	linear	regression

• Specifically,	the	least-squares	linear	regression	line	is	the	
linear	fit	to	a	dataset	(𝑥$, 𝑦$) that	minimizes	the	sum	of	
the	squares	of	the	𝑦-residuals

• With	an	intercept,	i.e.	fitting	the	line	𝑦 = 𝑎	𝑥 + 𝑏:

• Without	an	intercept,	i.e.	fitting	the	line	𝑦 = 𝑎	𝑥:

𝑎 =
∑ 𝑥$𝑦$-
$./ − 𝑁�̅�𝑦3
𝑁 − 1 	𝜎67	

= 𝑟
𝜎9
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𝑏 = 𝜇9 − 𝑎	𝜇6

𝑎 =
∑ 𝑥$𝑦$-
$./
∑ 𝑥$7-
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Quantifying	the	regression	fit

• As	well	as	the	best-fitting	line,	we	also	need	to	quantify	the	
accuracy	of	the	model

• Let’s	consider	the	sum	of	the	squared	residuals	from	the	
model,	𝑆𝑆<=> = ∑ 𝑦$ − 𝑦?@A,$

7�
$

• We	also	consider	the	total	sum	of	squares	𝑆𝑆C@C =
∑ 𝑦$ − 𝑦3 7�
$ which	is	proportional	to	the	variance of	𝑦$

• We	define	the	coefficient	of	determination 𝑅7 = 1 − EEFGH
EEIJI

,	
which	is	the	“fraction	of	variance	explained	by	the	fit”

• It’s	easy	to	use	these	formulae	to	show	that	𝑅 is	exactly	the	
same	as	the	correlation	coefficient	𝑟 we	met	in	Class	2



Least-squares	linear	regression

• Determine	the	linear	regression	line	for	the	test	correlation	
dataset	from	Class	2:

We	find	𝑅7 = 0.30,	i.e.	
“30%	of	the	variance	of	
the	points	is	explained	
by	the	model	fit”



The	Hubble	parameter	(continued)

• Returning	to	Hubble	and	Lemaitre’s	distance-velocity	
datasets,	find	the	linear	least-squares	regression	lines	with	
and	without	an	intercept,	and	the	value	of	𝑅7



Weighted	regression

• We	can	vary	the	weights 𝑤$ of	each	point	when	minimizing	
the	model	deviations	(if	for	example,	their	errors	𝜎$ vary)

• Note	that	linear	regression	with	weights	𝑤$ = 1/𝜎$7 is	
equivalent	to	minimizing	the	𝜒7 statistic	in	a	model	fit

• A	more	general	case	is	with	errors	in	both	co-ordinates:



The	case	of	errors	in	both	co-ordinates

• One	solution	for	cases	with	errors	in	both	co-ordinates	is	
to	modify	the	function	we	are	minimizing:

• The	denominator	propagates	the	variance	in	𝑦 from	the	
data	(= 𝜎9,$7 )	and	from	the	evaluation	of	the	model	at	𝑦 =
𝑎𝑥$ + 𝑏 (= 𝑎7 𝜎6,$7 )

• [Small	print:	this	expression	is	not	symmetric	in	𝑥 and	𝑦]

𝜒7 𝑎, 𝑏 =Q
𝑦$ − 𝑎𝑥$ − 𝑏 7

𝜎9,$7 + 𝑎7	𝜎6,$7

-

$./



The	Tully-Fisher	relation	

• For	example,	consider	an	example	dataset	containing	the	
stellar	masses	and	rotation	velocities	of	galaxies:

• Find	the	best-fitting	
linear	regression	by	
minimizing	the	
function	on	the	
previous	slide	using	
the	errors	in	both	
co-ordinates



Principal	component	analysis

• Let’s	say	we	have	a	dataset	which	contains	many	variables	
for	each	object	(e.g.,	magnitudes,	sizes,	types	of	galaxies)

(We’ll	just	use	2	
variables	𝑥 and	𝑦 to	
keep	the	illustration	
simple,	but	you	can	
imagine	that	the	
“cloud”	of	points	
could	extend	into	
more	variables)



Principal	component	analysis

• Let’s	say	we	have	a	dataset	which	contains	many	variables	
for	each	object	(e.g.,	magnitudes,	sizes,	types	of	galaxies)

• Principal	component	analysis	(PCA)	is	a	procedure	which	
uses	the	correlations	between	the	variables	to	identify	
which	combinations	of	variables	capture	most	information	
about	the	dataset

• Geometrically,	it	identifies	the	directions	in	which	the	
cloud	of	variables	is	most	elongated

• Mathematically,	it	determines	the	eigenvectors of	the	
covariance	matrix	and	sorts	them	in	importance	according	
to	their	corresponding	eigenvalues



Principal	component	analysis

• Applying	the	mathematical	steps	to	our	(𝑥, 𝑦)	example:

• Find	the	covariance	matrix	of	(𝑥, 𝑦):	𝐶 = 0.021 0.013
0.013 0.026

• Determine	the	eigenvalues	and	eigenvectors	of	𝐶:	
eigenvalues	are	𝜆/ = 0.037,	𝜆7 = 0.011	with	corresponding	
eigenvectors	�⃗�/ = (0.64,0.77)	and	�⃗�7 = (0.77,−0.64)

• Express	the	data	points	in	the	basis	of	the	eigenvectors	–	
new	co-ordinates	are	 𝑃𝐶/, 𝑃𝐶7 	such	that	�⃗� = 𝑥, 𝑦 =
�̅�, 𝑦3 + 𝑃𝐶/	�⃗�/ + 𝑃𝐶7	�⃗�7

Cov 𝑥, 𝑦 =
1

𝑁 − 1Q 𝑥$ − �̅�
-

$./

𝑦$ − 𝑦3𝐶 = Cov(𝑥, 𝑥) Cov(𝑥, 𝑦)
Cov(𝑦, 𝑥) Cov(𝑦, 𝑦)



Principal	component	analysis

• Here	are	the	eigenvectors	overplotted on	the	data,	with	
lengths	proportional	to	the	square	root	of	the	eigenvalues:

• The	eigenvectors	
define	the	directions	
of	the	“principal	axes”	
of	the	cloud	of	points

• The	size	of	the	
eigenvalues	
corresponds	to	the	
variance	(spread)	of	
data	along	each	
principal	axis



Principal	component	analysis

• Here	are	the	principal	component	values	of	each	data	point:

• The	cloud	of	points	
has	been	rotated	such	
that	its	principal	axes	
line	up	with	the	co-
ordinate	system

• PCA	is	analogous	to	a	
rotation:	𝐶 = Λ𝐷Λ`,	
where	𝐷 is	a	diagonal	
matrix	and	Λ is	a	
matrix	whose	columns	
are	the	eigenvectors



Principal	component	analysis

• PCA	is	commonly	used	for	dimensionality	reduction,	i.e.	
approximating	a	dataset	with	a	fewer	number	of	variables

• We	can	illustrate	this	by	reconstructing	our	previous	dataset	
using	only	1	principal	component,	 𝑥, 𝑦 = �̅�, 𝑦3 + 𝑃𝐶/	�⃗�/

• The	blue	points	are	an	
approximation	of	the	
original	black	points

• The	amount	of	
variance	retained	is	
determined	by	the	
size	of	𝜆/ compared	
to	∑ 𝜆$�

$



Principal	component	analysis

• Perform	a	Principal	Component	Analysis	on	the	provided	
dataset	of	SDSS	quasar	magnitudes.		How	many	principal	
components	are	needed	to	explain	90%	of	the	variance?

Image	credit:	astronomy.com



Interpolation

• We	may	wish	to	use	our	model	to	predict	outcome	values	in	
between	the	positions	of	our	data	points	(“interpolation”)

• There	are	various	possible	approaches	to	this,	depending	
on	what	assumptions	we	want	to	make	about	the	
properties	of	the	interpolating	function

Let’s	consider	the	
example	of	the	
function	𝑦 = 𝑥 sin 𝑥
sampled	at	𝑥 =
1,3,5,6,7,8 [credit:	
scikit-learn	
documentation]



Interpolation

• Two	general	approaches	are	to	use	linear	interpolation	or	a	
cubic	spline:

• These	approaches	don’t	provide	an	error	in	the	interpolation

A	cubic	spline	is	a	3rd-order	
polynomial	constructed	to	pass	
through	all	the	points



Interpolation

• Another	approach	is	to	model	the	function	using	a	Gaussian	
process (which	is	also	known	as	kriging in	some	fields)

• In	so	doing,	we’re	imposing	a	statistical	model	for	the	
correlations	in	the	function	(a	“smoothness	prior”)

• The	Gaussian	Process	
requires	us	to	specify	a	
“kernel”	which	describes	the	
degree	of	correlation	which	
is	allowed	in	the	function

• Here	we	have	assumed	

𝐾 𝑥/, 𝑥7 = 𝑒h
i
j
kilkj

m

j

where	𝐿 = 1;	this	is	a	length	
scale	of	allowed	variation	

68%	confidence	region	now	plotted



Interpolation

• A	Gaussian	process	can	also	propagate	noise in	the	data	into	
the	error	in	the	prediction:

• Here	we	changed	
the	kernel	to	include	
a	term	modelling	the	
noise



Supernova	cosmology	(continued)

• Let’s	return	to	the	supernova	distance-redshift	dataset from	
Class	3.		Fit	a	Gaussian	process	model	to	this	dataset	to	predict	
the	distance	modulus	and	its	error	at	any	redshift.



Summary

At	the	end	of	this	class	you	should	be	able	to	…

• … generate	a	least-squares	regression	line	to	a	dataset

• … handle	cases	with	errors	in	both	co-ordinates

• … perform	a	principal	component	analysis	on	a	set	of	
variables

• … construct	Gaussian	Process	models	for	interpolation


