Class 3: Model-fitting

In this class we will describe the use of the x?
statistic as a hypothesis test of a model, and in
determining best-fitting parameters




Class 3: Model-fitting

At the end of this class you should be able to ...

.. apply the y? statistic as a hypothesis test

« ...understand the probability distribution of the y? statistic
and its interpretation as a p-value

... apply the y? statistic in parameter fitting

... determine parameter errors and joint confidence regions
using intervals of Ay?



Comparing data and models

* A key task in statistics is to build models which describe

our data:
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Comparing data and models

 When comparing data and models, we are typically doing
one of two things ...

* Hypothesis testing: we have a set of N measurements
x; T 0;, which a theorist says should have values u;. How
probable is it that these measurements would have been
obtained, if the theory is correct?

* Parameter estimation: we have a parameterized model
which describes the data, suchasy = ax + b. What are
the best-fitting parameters and errors in those
parameters?



The y* statistic

* The most important statistic to help with these tasks is the

x? statistic between the data x; + g; and model y;:
N
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The y? statistic

The most important statistic to help with these tasks is the

x? statistic between the data x; + g; and model y;:
N
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We accumulate the statistic according to how many
standard deviations each data point lies from the model

x¥*2 is a measure of the goodness-of-fit of the data to the

model

If the data are numbers taken as part of a counting
experiment, we could use the Poisson error g;% = ;

[Small print: this equation assumes the data points are independent]



x2 probability distribution

* Sampling many realizations of N data points from a
particular model, using Gaussian statistics, the y? statistic
has a probability distribution:

(For N = 10 data points)
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x2 probability distribution

* Sampling many realizations of N data points from a
particular model, using Gaussian statistics, the y? statistic
has a probability distribution

V_1 2
P(x?) «x (x3)2 e x"/2

* Visthe number of degrees of freedom
* |f the model has no free parameters, thenv = N

* If we are fitting a model with p free parameters, we can
“force the model to agree exactly with p data points” and
the degrees of freedom are reducedtov =N —p



x2 probability distribution

Example y? distribution: v =[5, 10, 15]
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x2 probability distribution

The y? distribution:

V_1 2
P(x?) o« (xy2)2 e X"/2

The mean of the distribution: y2 = v = N — p

This makes intuitive sense, because each data point should
lie about 10 from the model and hence contribute 1.0 to
the y? statistic

The variance: Var(y?) = 2v

If the model is correct, we expect y? ~v +v2v



Reduced y?

* As a way of summarizing the model fit, we can quote the
reduced y? statistic, y,> = x?/v

e For a good fit, y,-% ~ 1 (because )? =v)

 However, the true probability of the data being consistent
with the model depends on both y? and v

* Do not just quote the reduced y* value
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Use of y“ statistic as a hypothesis test

 We can use the y* statistic to construct a hypothesis test
describing the “goodness of fit” between data and model

* Null hypothesis: the data are consistent with the model
* Test statistic: y?
* Distribution of values: The y? probability distribution

* Confidence statement: What is the probability that this
value of x4, or a larger one, could arise by chance?

* If the p-value is not low, the data are consistent with the
model, which is “ruled in”

* If the p-value is low, the model is “ruled out”



Use of y“ statistic as a hypothesis test

* Suppose thatv = 30 and we have 2 datasets with y* = 37.5
and x? = 52.1. What are the corresponding p-values?

2 distribution(X?)
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Cautionary words

* Let’s recall our discussion in Class 2 on the meaning of p
* Suppose a x? hypothesis test yields p = 0.01

* This means: there is a 1% chance of obtaining a set of
measurements at least this discrepant from the model,
assuming the model is true. It does not mean:

* “the probability that the model is true is 1%”
* “the probability that the model is false is 99%”

* “if we reject the model there is a 1% chance that we
would be mistaken”

* Frequentist statistics cannot assess the probability that
the model itself is correct



Cautionary words

= ':’

| An error has occured while creating an error report

OK

* When using y? we’re assuming that the errors in the data
are Gaussian and reliable. This is not guaranteed!

* If the errors have been under-estimated, then an
improbably high value of ¥? can be obtained

* |f the errors have been over-estimated, then an
improbably low value of y? can be obtained

* Since errors are often approximate, a model is typically
only rejected for very low values of p such as 0.001



Cautionary words

 Anissue in using the y? statistic is binning of data

* For example, suppose we have a sample of galaxy
luminosities. To compare the data with a Schechter
function model, we would bin it into a luminosity function

* Warning: if the numbers in each bin are too small the
probabilities can become non-Gaussian

* As arule of thumb, 80% of bins must have N > 5
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Modification for correlated data

* If the data are correlated, the y* equation must be modified:

N

N
2= ) (di—m) (€7D (4 —my) = (d = m)TC(d - m)
1j=1

Here, C is the covariance matrix of the data, such that

Cij = (x; x;) — {x;) (%)

Note that C;; = (x;%) — (x;)? is the variance g;*

The number of degrees of freedom is unchanged (for
anything less than complete correlation)



Use of y“ statistic for parameter fitting

* A model typically contains free parameters. How do we
determine the most likely values of these parameters and

their error ranges?
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Use of y“ statistic for parameter fitting

A model typically contains free parameters. How do we
determine the most likely values of these parameters and
their error ranges?

* Suppose we are fitting a model with 2 free parameters
(a,b)

* The most likely (“best-fitting”) values of (a, b) are found
by minimizing the y? statistic

* The joint error distribution of (a, b) can be found by
calculating the values of y* over a grid of (a, b) and
enclosing a particular region y? < y2.. + Ay?



Joint confidence regions

* We plot 2D contours of constant y2 = y2.. + Ay?

* A joint confidence region for (a, b) can be defined by the
zone which satisfies y? < y2.:, + Ax?

* The values of Ay? depend on the number of variables and
confidence limits:

2 parameters varying

Ax? as a Function of Ctyﬁdence Level and Degrees of Freedom
7 ” (Table taken from

2 3 4 5 6 Numerical Recipes

14 T
683% | 100 | 230 | [353 472 589  7.04 Chapter 15)
—90% TH—T#6T—625 778 924 106
954% | 400 | 617 | 802 970 113 128

1-0 99% 663 | 921 | 13 133 151 168
fid 973% | 900 | 118 | 142 163 182 201
contigence 9999% | 151 | 184 | 211 235 257 278

* [Small print: assumes the variables are Gaussian-distributed]



Use of y“ statistic for parameter fitting

* Hereis an example dataset containing N = 10 points:




Use of y“ statistic for parameter fitting

* Could these points be fit by a constant y = b? Minimizing
x?, we find y2:, = 31.6 forb = 1.79
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Use of y“ statistic for parameter fitting

* |s the minimum x? likely given the model? Consider the y*
probability distribution for y? > 31.6andv =N —1 = O:
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Use of y“ statistic for parameter fitting

* Could these points be fit by a straight liney = ax + b?
Minimizing x2, we find y~;, = 7.5 fora = 0.27 and b = 0.44
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Use of y“ statistic for parameter fitting

* |s the minimum x? likely given the model? Consider the y*
probability distribution for y? > 7.5andv =N — 2 = 8:
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Use of y“ statistic for parameter fitting

* Now let’s determine the error ranges. What is the distribution
of y? values across the (a, b) grid?
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Use of y“ statistic for parameter fitting

* Now let’s determine the error ranges. What is the distribution
of y? values across the (a, b) grid?
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Use of y“ statistic for parameter fitting

* Set confidence regions using Ay? intervals: for 2 parameters,
the (68,95,99)% regions are Ay? = (2.30,6.17,11.8)
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Use of y“ statistic for parameter fitting

* What about errors in individual parameters? For each value
of parameter a, find the minimum y? varying parameter b:

20 For each valueofa, —
what is the minimum
1.5 - x? along this line?
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Use of y“ statistic for parameter fitting

* What about errors in individual parameters? For each value
of parameter a, find the minimum y? varying parameter b:
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Supernova cosmology

* |n this Activity we will use a recent supernova distance-
redshift dataset to determine the parameters (Q,,,, Q)

* Minimize y* and
find the best-fitting
(‘Qm' ‘QA) 441

46 A

* Construct the 2D
confidence regions £ 40

in (Q,,, Q) 38 1

e Determine the
individual errors in 34 -
(), and Qp 00 02 04 06 08 10 12 14




At the end of this class you should be able to ...

.. apply the y? statistic as a hypothesis test

« ...understand the probability distribution of the y? statistic
and its interpretation as a p-value

... apply the y? statistic in parameter fitting

... determine parameter errors and joint confidence regions
using intervals of Ay?



