In this class we will describe the use of the χ^2 statistic as a hypothesis test of a model, and in determining best-fitting parameters.
At the end of this class you should be able to ...

• ... apply the χ^2 statistic as a hypothesis test

• ... understand the probability distribution of the χ^2 statistic and its interpretation as a p-value

• ... apply the χ^2 statistic in parameter fitting

• ... determine parameter errors and joint confidence regions using intervals of $\Delta \chi^2$
• A key task in statistics is to build models which describe our data:
Comparing data and models

• When comparing data and models, we are typically doing one of two things ...

• **Hypothesis testing**: we have a set of N measurements $x_i \pm \sigma_i$, which a theorist says should have values μ_i. How probable is it that these measurements would have been obtained, if the theory is correct?

• **Parameter estimation**: we have a parameterized model which describes the data, such as $y = ax + b$. What are the best-fitting parameters and errors in those parameters?
The χ^2 statistic

- The most important statistic to help with these tasks is the χ^2 statistic between the data $x_i \pm \sigma_i$ and model μ_i:

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2$$

- This point is 1-σ away from the model, so increments χ^2 by 1.0
- This point is 2-σ away from the model, so increments χ^2 by 4.0
- This point is on the model, so increments χ^2 by 0.0

χ^2 is a sum over the data points
The χ^2 statistic

- The most important statistic to help with these tasks is the χ^2 statistic between the data $x_i \pm \sigma_i$ and model μ_i:

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2$$

- We accumulate the statistic according to how many standard deviations each data point lies from the model.

- χ^2 is a measure of the goodness-of-fit of the data to the model.

- If the data are numbers taken as part of a counting experiment, we could use the Poisson error $\sigma_i^2 = \mu_i$.

- [Small print: this equation assumes the data points are independent]
• Sampling many realizations of N data points from a particular model, using Gaussian statistics, the χ^2 statistic has a **probability distribution**:

(For $N = 10$ data points)

This allows us to quantify the likelihood of χ^2 taking on a particular (range of) values, given the number of data points.
\(\chi^2 \) probability distribution

- Sampling many realizations of \(N \) data points from a particular model, using Gaussian statistics, the \(\chi^2 \) statistic has a probability distribution

\[
P(\chi^2) \propto (\chi^2)^{\frac{\nu}{2}-1} e^{-\chi^2/2}
\]

- \(\nu \) is the number of degrees of freedom

- If the model has no free parameters, then \(\nu = N \)

- If we are fitting a model with \(p \) free parameters, we can “force the model to agree exactly with \(p \) data points” and the degrees of freedom are reduced to \(\nu = N - p \)
Example χ^2 distribution: $\nu = [5, 10, 15]$
\(\chi^2 \) probability distribution

- The \(\chi^2 \) distribution:
 \[
P(\chi^2) \propto (\chi^2)^{\nu - 1} e^{-\chi^2/2}
\]

- The **mean** of the distribution: \(\bar{\chi}^2 = \nu = N - p \)

- *This makes intuitive sense, because each data point should lie about 1\(\sigma \) from the model and hence contribute 1.0 to the \(\chi^2 \) statistic*

- The **variance**: \(\text{Var}(\chi^2) = 2\nu \)

- If the model is correct, we expect \(\chi^2 \sim \nu \pm \sqrt{2\nu} \)
Reduced χ^2

- As a way of summarizing the model fit, we can quote the reduced χ^2 statistic, $\chi_r^2 = \chi^2 / \nu$

- For a good fit, $\chi_r^2 \sim 1$ (because $\bar{\chi^2} = \nu$)

- However, the true probability of the data being consistent with the model depends on both χ^2 and ν

- *Do not just quote the reduced χ^2 value*
Use of χ^2 statistic as a hypothesis test

• *We can use the χ^2 statistic to construct a hypothesis test describing the “goodness of fit” between data and model*

• **Null hypothesis**: the data are consistent with the model

• **Test statistic**: χ^2

• **Distribution of values**: The χ^2 probability distribution

• **Confidence statement**: What is the probability that this value of χ^2, or a larger one, could arise by chance?

• If the *p-value is not low*, the data are consistent with the model, which is “ruled in”

• If the *p-value is low*, the model is “ruled out”
Use of χ^2 statistic as a hypothesis test

- Suppose that $\nu = 30$ and we have 2 datasets with $\chi^2 = 37.5$ and $\chi^2 = 52.1$. What are the corresponding p-values?

$$p = 0.16 \text{ for } \chi^2 > 37.5$$

$$p = 0.007 \text{ for } \chi^2 > 52.1$$
Cautionary words

• *Let’s recall our discussion in Class 2 on the meaning of p*

• Suppose a χ^2 hypothesis test yields $p = 0.01$

• This means: **there is a 1% chance of obtaining a set of measurements at least this discrepant from the model, assuming the model is true.** It does not mean:

 • “the probability that the model is true is 1%”
 • “the probability that the model is false is 99%”
 • “if we reject the model there is a 1% chance that we would be mistaken”

• **Frequentist statistics cannot assess the probability that the model itself is correct**
Cautionary words

• When using χ^2 we’re assuming that the errors in the data are Gaussian and reliable. *This is not guaranteed!*

• If the errors have been under-estimated, then an *improbably high* value of χ^2 can be obtained.

• If the errors have been over-estimated, then an *improbably low* value of χ^2 can be obtained.

• Since errors are often approximate, a model is typically only rejected for *very low* values of p such as 0.001.
An issue in using the χ^2 statistic is **binning of data**

For example, suppose we have a sample of galaxy luminosities. To compare the data with a Schechter function model, we would bin it into a luminosity function.

Warning: if the numbers in each bin are too small the probabilities can become non-Gaussian.

As a rule of thumb, 80% of bins must have $N > 5$.
• If the data are **correlated**, the χ^2 equation must be modified:

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (d_i - m_i) (C^{-1})_{ij} (d_j - m_j) = (d - m)^T C^{-1} (d - m)$$

• Here, C is the covariance matrix of the data, such that

$$C_{ij} = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

• Note that $C_{ii} = \langle x_i^2 \rangle - \langle x_i \rangle^2$ is the variance σ_i^2

• The **number of degrees of freedom is unchanged** (for anything less than complete correlation)
A model typically contains free parameters. How do we determine the most likely values of these parameters and their error ranges?
Use of χ^2 statistic for parameter fitting

- A model typically contains free parameters. How do we determine the most likely values of these parameters and their error ranges?

- Suppose we are fitting a model with 2 free parameters (a, b)

- The most likely (“best-fitting”) values of (a, b) are found by minimizing the χ^2 statistic

- The joint error distribution of (a, b) can be found by calculating the values of χ^2 over a grid of (a, b) and enclosing a particular region $\chi^2 < \chi_{\text{min}}^2 + \Delta \chi^2$
Joint confidence regions

• We plot 2D contours of constant \(\chi^2 = \chi^2_{\text{min}} + \Delta \chi^2 \)

• A joint confidence region for \((a, b)\) can be defined by the zone which satisfies \(\chi^2 < \chi^2_{\text{min}} + \Delta \chi^2 \)

• The values of \(\Delta \chi^2 \) depend on the number of variables and confidence limits:

| \(\Delta \chi^2 \) as a Function of Confidence Level and Degrees of Freedom |
|---|---|---|---|---|---|---|---|
| \(\nu \) | 1 | 2 | 3 | 4 | 5 | 6 |
| 68.3% | 1.00 | 2.30 | 3.53 | 4.72 | 5.89 | 7.04 |
| 90% | 2.71 | 4.61 | 6.25 | 7.78 | 9.24 | 10.6 |
| 95.4% | 4.00 | 6.17 | 8.02 | 9.70 | 11.3 | 12.8 |
| 99% | 6.63 | 9.21 | 11.3 | 13.3 | 15.1 | 16.8 |
| 99.73% | 9.00 | 11.8 | 14.2 | 16.3 | 18.2 | 20.1 |
| 99.99% | 15.1 | 18.4 | 21.1 | 23.5 | 25.7 | 27.8 |

• [Small print: assumes the variables are Gaussian-distributed]
Use of χ^2 statistic for parameter fitting

Here is an example dataset containing $N = 10$ points:
Could these points be fit by a constant $y = b$? Minimizing χ^2, we find $\chi^\text{min} = 31.6$ for $b = 1.79$.
• *Is the minimum χ^2 likely given the model?* Consider the χ^2 probability distribution for $\chi^2 > 31.6$ and $\nu = N - 1 = 9$:
Could these points be fit by a straight line $y = ax + b$?

Minimizing χ^2, we find $\chi^2_{\text{min}} = 7.5$ for $a = 0.27$ and $b = 0.44$
• *Is the minimum χ^2 likely given the model?* Consider the χ^2 probability distribution for $\chi^2 > 7.5$ and $\nu = N - 2 = 8$:

Probability in tail = 0.48 – the model is ruled in

Use of χ^2 statistic for parameter fitting
Now let’s determine the error ranges. What is the distribution of χ^2 values across the (a, b) grid?
Now let’s determine the error ranges. What is the distribution of χ^2 values across the (a, b) grid?
Use of χ^2 statistic for parameter fitting

- *Set confidence regions using $\Delta \chi^2$ intervals:* for 2 parameters, the (68,95,99)% regions are $\Delta \chi^2 = (2.30, 6.17, 11.8)$
What about errors in individual parameters? For each value of parameter a, find the minimum χ^2 varying parameter b:

For each value of a, what is the minimum χ^2 along this line?
What about errors in individual parameters? For each value of parameter a, find the minimum χ^2 varying parameter b:

Use of χ^2 statistic for parameter fitting
Supernova cosmology

- In this Activity we will use a recent **supernova distance-redshift dataset** to determine the parameters \((\Omega_m, \Omega_\Lambda)\)

- Minimize \(\chi^2\) and find the best-fitting \((\Omega_m, \Omega_\Lambda)\)

- Construct the **2D confidence regions** in \((\Omega_m, \Omega_\Lambda)\)

- Determine the **individual errors** in \(\Omega_m\) and \(\Omega_\Lambda\)
At the end of this class you should be able to ...

• ... apply the χ^2 statistic as a hypothesis test

• ... understand the probability distribution of the χ^2 statistic and its interpretation as a p-value

• ... apply the χ^2 statistic in parameter fitting

• ... determine parameter errors and joint confidence regions using intervals of $\Delta\chi^2$