Class 3: Model-fitting

In this class we will describe the use of the χ^2 statistic as a hypothesis test of a model, and in determining best-fitting parameters

Class 3: Model-fitting

At the end of this class you should be able to ...

- ... apply the χ^2 statistic as a hypothesis test
- ... understand the probability distribution of the χ^2 statistic and its interpretation as a p-value
- ... apply the χ^2 statistic in parameter fitting
- ... determine parameter errors and joint confidence regions using intervals of $\Delta\chi^2$

Comparing data and models

• A key task in statistics is to build models which describe our data:

Comparing data and models

- When comparing data and models, we are typically doing one of two things ...
- Hypothesis testing: we have a set of N measurements $x_i \pm \sigma_i$, which a theorist says should have values μ_i . How probable is it that these measurements would have been obtained, if the theory is correct?
- Parameter estimation: we have a parameterized model which describes the data, such as y = ax + b. What are the best-fitting parameters and errors in those parameters?

The χ^2 statistic

• The most important statistic to help with these tasks is the χ^2 statistic between the data $x_i \pm \sigma_i$ and model μ_i :

The χ^2 statistic

• The most important statistic to help with these tasks is the χ^2 statistic between the data $x_i \pm \sigma_i$ and model μ_i :

$$\chi^2 = \sum_{i=1}^N \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2$$

- We accumulate the statistic according to how many standard deviations each data point lies from the model
- χ^2 is a measure of the **goodness-of-fit** of the data to the model
- If the data are numbers taken as part of a **counting** experiment, we could use the Poisson error $\sigma_i^2 = \mu_i$
- [Small print: this equation assumes the data points are independent]

• Sampling many realizations of N data points from a particular model, using Gaussian statistics, the χ^2 statistic has a **probability distribution**:

• Sampling many realizations of N data points from a particular model, using Gaussian statistics, the χ^2 statistic has a **probability distribution**

$$P(\chi^2) \propto (\chi^2)^{\frac{\nu}{2}-1} e^{-\chi^2/2}$$

- v is the number of **degrees of freedom**
- If the model has no free parameters, then $\nu = N$
- If we are fitting a model with p free parameters, we can "force the model to agree exactly with p data points" and the degrees of freedom are reduced to v = N p

• The χ^2 distribution:

$$P(\chi^2) \propto (\chi^2)^{\frac{\nu}{2}-1} e^{-\chi^2/2}$$

- The **mean** of the distribution: $\overline{\chi^2} = \nu = N p$
- This makes intuitive sense, because each data point should lie about 1σ from the model and hence contribute 1.0 to the χ^2 statistic
- The variance: $Var(\chi^2) = 2\nu$
- If the model is correct, we expect $\chi^2 \sim \nu \pm \sqrt{2\nu}$

- As a way of summarizing the model fit, we can quote the reduced χ^2 statistic, $\chi_r^2 = \chi^2/\nu$
- For a good fit, $\chi_r^2 \sim 1$ (because $\overline{\chi^2} = \nu$)
- However, the true probability of the data being consistent with the model depends on **both** χ^2 and ν
- Do not just quote the reduced χ^2 value

hutterstock.com • 1487708258

Use of χ^2 statistic as a hypothesis test

- We can use the χ^2 statistic to construct a hypothesis test describing the "goodness of fit" between data and model
- Null hypothesis: the data are consistent with the model
- Test statistic: χ^2
- **Distribution of values**: The χ^2 probability distribution
- **Confidence statement**: What is the probability that this value of χ^2 , or a larger one, could arise by chance?
- If the *p*-value is not low, the data are consistent with the model, which is *"ruled in"*
- If the *p*-value is low, the model is *"ruled out"*

Use of χ^2 statistic as a hypothesis test

• Suppose that v = 30 and we have 2 datasets with $\chi^2 = 37.5$ and $\chi^2 = 52.1$. What are the corresponding *p*-values?

Cautionary words

- Let's recall our discussion in Class 2 on the meaning of p
- Suppose a χ^2 hypothesis test yields p = 0.01
- This means: there is a 1% chance of obtaining a set of measurements at least this discrepant from the model, assuming the model is true. It does not mean:
- "the probability that the model is true is 1%"
- "the probability that the model is false is 99%"
- "if we reject the model there is a 1% chance that we would be mistaken"
- Frequentist statistics cannot assess the probability that the model itself is correct

Cautionary words

- When using χ^2 we're assuming that the errors in the data are **Gaussian** and **reliable**. *This is not guaranteed!*
- If the errors have been **under-estimated**, then an **improbably high** value of χ^2 can be obtained
- If the errors have been **over-estimated**, then an **improbably low** value of χ^2 can be obtained
- Since errors are often approximate, a model is typically only rejected for **very low** values of *p* such as 0.001

Cautionary words

- An issue in using the χ^2 statistic is **binning of data**
- For example, suppose we have a sample of galaxy luminosities. To compare the data with a Schechter function model, we would bin it into a luminosity function
- Warning: if **the numbers in each bin are too small** the probabilities can become non-Gaussian
- As a rule of thumb, 80% of bins must have N > 5

Modification for correlated data

• If the data are **correlated**, the χ^2 equation must be modified:

$$\chi^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} (d_{i} - m_{i}) (C^{-1})_{ij} (d_{j} - m_{j}) = (\mathbf{d} - \mathbf{m})^{T} \mathbf{C}^{-1} (\mathbf{d} - \mathbf{m})$$

• Here, C is the covariance matrix of the data, such that

$$C_{ij} = \langle x_i \, x_j \rangle - \langle x_i \rangle \, \langle x_j \rangle$$

- Note that $C_{ii} = \langle x_i^2 \rangle \langle x_i \rangle^2$ is the variance σ_i^2
- The **number of degrees of freedom is unchanged** (for anything less than complete correlation)

• A model typically contains free parameters. How do we determine the most likely values of these parameters and their error ranges?

- A model typically contains free parameters. How do we determine the most likely values of these parameters and their error ranges?
- Suppose we are fitting a model with 2 free parameters (*a*, *b*)
- The most likely ("best-fitting") values of (a, b) are found by minimizing the χ^2 statistic
- The joint error distribution of (a, b) can be found by calculating the values of χ^2 over a grid of (a, b) and enclosing a particular region $\chi^2 < \chi^2_{\min} + \Delta \chi^2$

Joint confidence regions

- We plot 2D contours of constant $\chi^2 = \chi^2_{\rm min} + \Delta \chi^2$
- A joint confidence region for (a, b) can be defined by the zone which satisfies $\chi^2 < \chi^2_{\min} + \Delta \chi^2$
- The values of $\Delta \chi^2$ depend on the number of variables and confidence limits: 2 parameters varying

(Table taken from *Numerical Recipes* Chapter 15)

• [Small print: assumes the variables are Gaussian-distributed]

• Here is an example dataset containing N = 10 points:

• Could these points be fit by a constant y = b? Minimizing χ^2 , we find $\chi^2_{min} = 31.6$ for b = 1.79

• Is the minimum χ^2 likely given the model? Consider the χ^2 probability distribution for $\chi^2 > 31.6$ and $\nu = N - 1 = 9$:

• Could these points be fit by a straight line y = ax + b? Minimizing χ^2 , we find $\chi^2_{min} = 7.5$ for a = 0.27 and b = 0.44

• Is the minimum χ^2 likely given the model? Consider the χ^2 probability distribution for $\chi^2 > 7.5$ and $\nu = N - 2 = 8$:

• Now let's determine the error ranges. What is the distribution of χ^2 values across the (a, b) grid?

а

• Now let's determine the error ranges. What is the distribution of χ^2 values across the (a, b) grid?

	-1.0- 0.	0	0.1		0.2		0.3		0.4		0.
	_1 0	280.4	225.3	176.9	135.1	100.0	71.5	49.7	34.5	26.0	24.1
	-0.5 -	223.6	174.6	132.1	96.4	67.2	44.8	28.9	19.8	17.2	21.4
		174.1	131.0	94.6	64.8	41.7	25.2	15.4	12.2	15.7	25.8
	0.0 -	131.7	94.6	64.2	40.4	23.3	12.8	9.0	11.8	21.3	37.4
q	0.5 -	96.5	65.5	41.1	23.3	12.2	7.7	9.9	18.7	34.2	56.3
-		68.6	43.5	25.1	13.3	8.2	9.7	17.9	32.7	54.2	82.3
	1.0 -	47.8	28.8	16.3	10.6	11.4	19.0	33.1	54.0	81.4	115.6
		34.3	21.2	14.8	15.0	21.9	35.4	55.6	82.4	115.9	156.0
	1.5 -	27.9	20.8	20.4	26.6	39.5	59.0	85.2	118.0	157.5	203.6
	2.0 -	28.7	27.7	33.3	45.5	64.4	89.9	122.1	160.9	206.4	258.5

• Set confidence regions using $\Delta \chi^2$ intervals: for 2 parameters, the (68,95,99)% regions are $\Delta \chi^2 = (2.30,6.17,11.8)$

• What about errors in individual parameters? For each value of parameter a, find the minimum χ^2 varying parameter b:

• What about errors in individual parameters? For each value of parameter a, find the minimum χ^2 varying parameter b:

Supernova cosmology

- In this Activity we will use a recent **supernova distance**redshift dataset to determine the parameters $(\Omega_m, \Omega_\Lambda)$
- Minimize χ^2 and find the best-fitting $(\Omega_m, \Omega_\Lambda)$
- Construct the 2D confidence regions in $(\Omega_m, \Omega_\Lambda)$
- Determine the individual errors in Ω_m and Ω_Λ

Summary

At the end of this class you should be able to ...

- ... apply the χ^2 statistic as a hypothesis test
- ... understand the probability distribution of the χ^2 statistic and its interpretation as a p-value
- ... apply the χ^2 statistic in parameter fitting
- ... determine parameter errors and joint confidence regions using intervals of $\Delta\chi^2$