
Class	2:	Correlation	Testing

In	this	class	we	will	review	how	to	quantify	
correlations	between	variables	and	test	for	their	
significance,	and	determine	whether	different	
samples	are	drawn	from	the	same	underlying	

distributions	



At	the	end	of	this	class	you	should	be	able	to	…

• … test	for	the	degree	of	correlation	between	2	variables,	and	
its	significance

• … implement	correlation	as	a	hypothesis	test,	and	
understand	the	significance	of	the	resulting	𝑝-value

• … test	if	two	samples	are	drawn	from	the	same	parent	
distribution

• … appreciate	the	pitfalls	that	can	arise	when	searching	for	
correlations

Class	2:	Correlation	Testing



Correlation	versus	independence

• Two	variables	are	correlated if	they	share	a	statistical	
dependence	/	relationship

• E.g.,	the	daily	temperatures	at	noon	and	1pm	are	correlated,	
because	they	both	lie	above	the	mean	temperature

• Correlations	between	variables	could	indicate	some	
underlying	physical	relationship	between	those	variables



Correlation	versus	independence



Correlation	versus	independence

Trick	for	generating	correlated	variables:
• 𝑥, 𝑧 Gaussian	random	variables
• 𝑦 = 𝑥𝜌 + 𝑧 1 − 𝜌+�

• 𝑥, 𝑦 have	correlation	coefficient	𝜌



Correlations	in	astrophysics

• Astrophysics	contains	many	correlations!

Tully-Fisher	relation

Credit:	https://en.wikipedia.org/wiki/Tully–
Fisher_relation

Black	hole	- bulge	relation

Credit:	ned.ipac.caltech.edu



Pitfalls	when	searching	for	correlations

• Selection	effects	can	easily	lead	to	spurious	correlations

• Here	is	a	perfect	luminosity-redshift	correlation	for	radio	
galaxies	in	the	3CR	survey:
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Hz Galaxies	cannot	
appear	in	this	region	
because	they	are	
below	the	flux	limit

Galaxies	cannot	
appear	in	this	region	
because	of	the	
steepness	of	the	
luminosity	function

Credit:	A.Sandage (1972)



Pitfalls	when	searching	for	correlations

• Correlations	can	be	driven	by	a	small	number	of	outliers

• The	following	four	(𝑥, 𝑦) datasets	all	have	the	same	mean,	
variance,	correlation	coefficient	and	regression	line:

Credit:	Anscombe’s quartet	(https://en.wikipedia.org/wiki/Anscombe%27s_quartet)

The	correlation	here	
is	completely	driven	
by	a	single	outlier

“Rule	of	thumb”:	if	a	
correlation	goes	
away	after	you	cover	
part	of	the	dataset	
with	your	thumb,	it	
probably	isn’t	real!



Pitfalls	when	searching	for	correlations

• Correlation	is	not	the	same	as	causation

• The	correlation	of	two	variables	does	not	necessarily	imply	
a	causal/direct	connection.		They	might	both	be	driven	by	a	
“third	variable”.

Eating	ice	cream	
causes	sunburn??

Credit:	https://towardsdatascience.com/correlation-
is-not-causation-ae05d03c1f53

Procrastinate	by	checking	a	
few	more	examples	at	
https://www.tylervigen.com/
spurious-correlations



Correlation	coefficient

• The	correlation	coefficient	describes	the	strength	of	the	
correlation between	two	variables	(𝑥, 𝑦)

• If	the	variables	have	means	(𝜇0, 𝜇1) and	standard	
deviations	(𝜎0, 𝜎1),	then	the	definition	of	the	correlation	
coefficient	𝜌 is:

• [Small	print:	we’ll	use	𝜌 to	mean	the	underlying	theoretical correlation	
coefficient,	and	𝑟 as	the	value	estimated	from	data,	i.e.	𝜌4 = 𝑟]

𝜌 = 	
(𝑥 − 𝜇0)(𝑦 − 𝜇1)

𝜎0𝜎1
=

𝑥𝑦 − 𝜇0𝜇1
𝜎0𝜎1

𝑥𝑦 = 6 6 𝑥	𝑦	𝑃 𝑥, 𝑦 	𝑑𝑥	𝑑𝑦
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Correlation	coefficient

• For	no	correlation,	𝑃(𝑥, 𝑦) is	separable	into	𝑓 𝑥 	𝑔(𝑦),	
hence	 𝑥𝑦 = 𝑥 𝑦 = 𝜇0𝜇1 and	𝜌 = 0

• For	complete	correlation,	𝑦 = 𝐶𝑥 and	𝜌 = +1

• For	complete	anti-correlation,	𝑦 = −𝐶𝑥 and	𝜌 = −1

• The	possible	range	is	−1 ≤ 𝜌 ≤ +1

𝜌 = 	
(𝑥 − 𝜇0)(𝑦 − 𝜇1)

𝜎0𝜎1
=

𝑥𝑦 − 𝜇0𝜇1
𝜎0𝜎1

Weak	correlation Moderate	correlation Strong	correlation



• We	can	estimate	the	correlation	coefficient	of	data	samples	
(𝑥@, 𝑦@) using	the	Pearson	product-moment	formula:

• Can	compare	this	formula	with	the	definition	𝜌 = 01 :ABAC
DBDC

and	see	that	𝒓 is	an	estimator	of	𝝆

• The	possible	range	of	values	is	−1 ≤ 𝑟 ≤ +1

𝑟 = 	
∑ (𝑥@ − �̅�)(𝑦@ − 𝑦I)J
@KL

∑ (𝑥@ − �̅�)+J
@KL ∑ (𝑦@ − 𝑦I)+J

@KL
�

=
∑ 𝑥@𝑦@J
@KL − 𝑁�̅�𝑦I

(𝑁 − 1) Var 𝑥 	Var(𝑦)�

Pearson	product-moment	correlation



Significance	of	correlation

• When	correlation-testing,	it	is	not sufficient	to	just	measure	𝑟.		
We	also	need	to	check	the	significance	of	the	correlation

• Correlations	can	arise	by	random	chance!

𝑃(𝑥, 𝑦) = 	
exp − 1

2(1 − 𝜌+)
(𝑥 − 𝜇0)+
𝜎0+

+
(𝑦 − 𝜇1)+
𝜎1+

−
2(𝑥 − 𝜇0)(𝑦 − 𝜇1)

𝜎0𝜎1
2𝜋𝜎0𝜎1 1 − 𝜌+�

• Let’s	model	the	data	by	
supposing	(𝑥, 𝑦) are	drawn	from	
a	bivariate	Gaussian	distribution	
about	an	underlying	relation	
[which	often	works	pretty	well]

Credit:	Wikipedia



Significance	of	correlation

• When	correlation-testing,	it	is	not sufficient	to	just	measure	𝑟.		
We	also	need	to	check	the	significance	of	the	correlation

• Correlations	can	arise	by	random	chance!

• Let’s	model	the	data	by	
supposing	(𝑥, 𝑦) are	drawn	from	
a	bivariate	Gaussian	distribution	
about	an	underlying	relation	
[which	often	works	pretty	well]

Credit:	Wikipedia

• If	this	model	is	true,	then	the	uncertainty
in	the	measured	value	of	𝑟,	if	we	have	𝑁
data	points,	is:

𝜎(𝑟) =
1 − 𝑟+

𝑁 − 2
�



Hypothesis	tests

• Hypothesis	tests	are	a	common	
approach	for	addressing	statistical	
questions	in	the	frequentist	
framework

• They	typically	involve	a	null	
hypothesis,	a	test	statistic,	a	
distribution	of	values	that	statistic	
can	take	if	the	hypothesis	is	true,	
and	a	tailed	confidence	limit

• Let’s	see	an	example	…

Credit:	xkcd.com



Hypothesis	tests

(1)	A	statistic	we	measure	
from	our	dataset

(2)	Distribution	of	values	
the	statistic	can	have,	

under	the	null	hypothesis
These	values
are	likely

These	values
are	unlikely

These	values
are	unlikely

(3)	If	the	measured	statistic	lies	
in	these	tails,	we	reject	the	null	
hypothesis	with	a	confidence	
equal	to	the	shaded	area



Significance	of	correlation

• Let’s	apply	this	approach	to	correlation	testing

• Null	hypothesis:	there	is	no	correlation	between	the	
variables

• Test	statistic:

• Distribution	followed	by	the	statistic:	the	Student’s	𝑡
probability	distribution	with	number	of	degrees	of	freedom	
𝜈 = 𝑁 − 2

• Probability	of	rejecting	the	hypothesis:	the	area	under	the	
tails	at	higher	values	of	|𝑡| than	we	have	measured

𝑡 = 𝑟
𝑁 − 2
1 − 𝑟+

� 𝑟 = correlation	coefficient
𝑁 = number	of	data	points



Significance	of	correlation

• Example:	we	measure	𝑟 = 0.5 for	𝑁 = 10 points.		Is	this	
correlation	significant?

• We	find	𝑡 = 1.63,	𝜈 = 8

• The	probability	of	finding	
|𝑡| > 1.63 is	14%

• This	is	not sufficiently	
small	to	reject	the	
hypothesis	of	no	
correlation:	this	
correlation	is	not	
significant

• [we	would	typically	reject	
with	(e.g.)	95,	99%	
confidence]

Area	for	 𝑡 > 1.63 is	14%



Hubble	and	Lemaitre’s	datasets

• In	this	Activity	we	will	check	who	discovered	the	expansion	
of	the	Universe!		See	Hubble	and	Lemaitre’s	distance-velocity	
datasets.		For	the	two	datasets,	determine	the	Pearson	
correlation	coefficient,	its	error and	statistical	significance



We	need	to	talk	about	𝑝-values!

• The	probability	of	rejecting	a	
hypothesis	is	often	known	as	a	
“𝒑-value”

• It	corresponds	to	the	
“significance” of	a	result

• Let’s	talk	about	exactly	what	this	
value	means,	since	this	can	be	
pretty	confusing	

Credit:	xkcd.com



Hypothesis	tests	and	𝑝-values

• Suppose	a	(no-)	correlation	significance	yields	𝑝 = 0.01

• This	means:	there	is	a	𝟏% chance	of	obtaining	a	set	of	
measurements	at	least	this	correlated,	if	the	underlying	
data	is	uncorrelated.		It	does	not	mean:

• “the	probability	that	the	points	are	uncorrelated	is	1%”

• “the	probability	that	the	points	are	correlated	is	99%”

• “if	we	claim	a	correlation,	there	is	a	1% chance	that	we	
would	be	mistaken”

• Frequentist	statistics	cannot	assess	the	probability	that	
the	model	itself	is	correct	(see	– Bayesian	statistics)



Non-parametric	correlation	tests

• If	we	do	not	want	to	assume	that	(𝑥, 𝑦) are	drawn	from	a	
bivariate	Gaussian,	we	can	use	a	non-parametric	
correlation	test

• Let	 𝑋@, 𝑌@ be	the	rank	of	(𝑥@, 𝑦@) in	the	overall	order,	such	
that	1 ≤ 𝑋@ ≤ 𝑁 and	1 ≤ 𝑌@ ≤ 𝑁

• Compute	the	Spearman	rank	correlation	coefficient

• Convert	the	correlation	coefficient	into	a	probability,	using	
the	Student’s	𝑡 distribution	as	before,	with	number	of	
degrees	of	freedom	𝜈 = 𝑁 − 2

𝑟e = 1 − 6	
∑ 𝑋@ − 𝑌@ +J
@KL
𝑁f − 𝑁



Bayesian	correlation	methods

• To	determine	the	significance	of	our	correlation,	we	have	
been	asking,	“what	is	the	probability	of	measuring	a	
particular	value	of	𝒓 if	there	is	no	correlation?”
Mathematically,

• Using	Bayesian	statistics	we	can	ask	the	opposite	question:	
“what	is	the	posterior	probability	distribution	for	the	
correlation	coefficient	𝝆 given	the	measured	value	of	𝒓?”		
Mathematically,

• [Good	example	of	the	difference	in	Frequentist	and	Bayesian	methods.]

𝑃(𝑟|𝜌 = 0)

𝑃(𝜌|𝑟)



Bayesian	correlation	methods

• Assuming	that	(𝑥, 𝑦) data	are	drawn	from	a	bivariate	Gaussian	
distribution	as	before,	we	can	use	Bayes’	theorem	to	compute	
𝑃(𝜌|𝑟)marginalizing	over	the	other	parameters	…

• We	can	then	substitute	our	values	of	𝑟 and	𝑁 in	this	formula

• We	obtain	the	full	probability	distribution	of	the	underlying	
value	of	𝜌,	the	correlation	coefficient

𝑃 𝜌 𝑟 ∝
1 − 𝜌+

J:L
+

1 − 𝜌𝑟 J:f+
	 1 +

1
𝑁 − L

+
	
1 + 𝜌𝑟
8 +⋯



Hubble	and	Lemaitre’s	datasets

• Returning	to	Hubble	and	Lemaitre’s	distance-velocity	
datasets,	now	determine	the	Spearman	rank	correlation	
coefficient,	its	statistical	significance,	and	the	full	probability	
distribution	of	𝑃(𝜌|𝑟) using	the	Bayesian	formula.



Hubble	and	Lemaitre’s	datasets

• Returning	to	Hubble	and	Lemaitre’s	distance-velocity	
datasets,	now	determine	the	Spearman	rank	correlation	
coefficient,	its	statistical	significance,	and	the	full	probability	
distribution	of	𝑃(𝜌|𝑟) using	the	Bayesian	formula.



Are	two	samples	consistent?

• We	now	consider	a	related	but	different	question:	testing	
whether	two	datasets	are	consistent



Are	the	means	of	two	samples	consistent?

𝑡 =
|𝜇0 − 𝜇1|

𝜎0+
𝑁0

+
𝜎1+
𝑁1

� 𝜈 =

𝜎0+
𝑁0

+
𝜎1+
𝑁1

+

𝜎0i
𝑁0+(𝑁0 − 1)

+
𝜎1i

𝑁1+(𝑁1 − 1)

• Let’s	start	with	a	test	based	on	the	means	and	standard	
deviations of	2	different	samples	(this	is	known	as	a	𝑡-test)

• Given	the	means	(𝜇0, 𝜇1) and	standard	deviations	(𝜎0, 𝜎1)
of	two	samples	of	size	(𝑁0, 𝑁1),	we	can	compute	the	𝒕
statistic	and	number	of	degrees	of	freedom	𝜈:

• We	then	compare	these	to	Student’s	𝒕 distribution to	
obtain	a	𝑝-value,	as	before



Kolmogorov-Smirnov	test

• To	test	whether	two	full	distributions	are	consistent	(that	is,	
drawn	from	the	same	parent	distribution)	we	can	use	the	
Kolmogorov-Smirnov	(K-S)	test

• This	test	considers	the	maximum	value	of	the	absolute	
difference	between	the	two	cumulative	probability	
distributions

• Example:	consider	2	datasets,	(1)	𝑁 = 100 points	sampled	
from	a	Gaussian	with	𝜇 = 0 and	𝜎 = 1,	(2)	𝑁 = 150 points	
sampled	from	a	Gaussian	with	𝜇 = 0.2 and	𝜎 = 1.		Here	
they	are	…



Kolmogorov-Smirnov	test

• The	data:



Kolmogorov-Smirnov	test

• Cumulative	probability	distribution:

• The	null	hypothesis	is	
that	these	datasets	are	
drawn	from	the	same	
parent	distribution

• This	is	the	maximum	
deviation,	𝑑 = 0.14

• The	probability of	
rejecting	the	null	
hypothesis	is	𝑝 = 0.196

• We	confirm	the	
hypothesis!



• The	provided	datasets	list	estimated	masses	for	neutron	
stars	which	are in	double	neutron	star	binaries	and	are	not
in	double	neutron	star	binaries

Kolmogorov-Smirnov	test

• Use	the	𝑡-test	to	
determine	whether	there	
is	any	significant	
difference	in	the	means	of	
the	two	samples?

• Use	the	K-S	test	to	
determine	whether	these	
mass	distributions	are	
consistent?



Summary

At	the	end	of	this	class	you	should	be	able	to	…

• … test	for	the	degree	of	correlation	between	2	variables,	and	
its	significance

• … implement	correlation	as	a	hypothesis	test,	and	
understand	the	significance	of	the	resulting	𝑝-value

• … test	if	two	samples	are	drawn	from	the	same	parent	
distribution

• … appreciate	the	pitfalls	that	can	arise	when	searching	for	
correlations


