Class 1: Probability & Statistics

In this class we will review how statistics are
used to summarize data, special probability
distributions, their use in simple applications
using Frequentist and Bayesian methods, and
Monte Carlo techniques




Class 1: Probability & Statistics

At the end of this class you should be able to ...

e ...determine summary statistics for datasets and their errors

... optimally combine data

... apply probability distributions for Gaussian, Binomial and
Poisson statistics

e ...compare the Frequentist and Bayesian frameworks for
statistical analysis

... solve statistical problems using Monte Carlo techniques
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The process of science

Obtain .)
measurements \

Desigh a question Analyze data

Conclude
(test hypothesis,
change probabilities)




The point of statistics

“If your experiment needs statistics, you ought
to have done a better experiment” (E.Rutherford)

“A body of methods for making wise decisions
in the face of uncertainty” (W.Wallis)

* Statistics allows us to formulae the logic of what we are
doing and why. It allows us to make precise statements.

 Statistics allows us to quantify the uncertainty in any
measurement (which should always be stated)

 Statistics allows us to avoid pitfalls such as confirmation
bias (distortion of conclusions by preconceived beliefs)



Common uses of statistics

* Measuring a quantity (“parameter .
estimation”): given some data, whatisour ' ¥ 200 & o )
best estimate of a particular parameter?

Correlated variables with r=10.8

What is the uncertainty in our estimate?
* Searching for correlations: are two vm.‘.‘t*
variables we have measured correlated R > Sl ‘
with each other, implying a possible T e e
phyS|ca| Connectlon? *%o 0.2 0.4 ] 0.6 08 1.0
* Testing a model (“hypothesis testing”): l
given some data and one or more models . >0
are our data consistent with the models? | }
Which model best describes our data?
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Summary statistics and their errors

e A statistic is a quantity which summarizes our data
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Summary statistics and their errors

e A statistic is a quantity which summarizes our data

* | have a sample of N independent estimates x; of some
guantity, how can | summarize them?

 The mean (typical value): x = %Zlivzl X;

 The median (middle value when ranked)

* The standard deviation o (spread) or variance:

N
Var(x) = o%(x) = ﬁi(’ci — X)*
i=1

* [Small print: Watch out for factor of N — 1! (see below)]



Summary statistics and their errors

* We can quote an error in each of these statistics:

e Error in the mean is standard deviation divided by v/N (as |
increase the sample size, the error in the mean improves)

Error in mean =

SIE

: . o
e Errorin the median = 1.25 N

. . / 2
e Errorin the variance = g? —

* [Small print: the error in the mean holds for all probability
distributions. The other two relations assume a Gaussian distribution.]



Estimators and bias

These formulae are a good example of estimators,
combinations of data which measure underlying quantities

. ~ 1 _
E.g., the estimator V = —Y N . (x; — ¥)? measures the
N—-1
underlying variance V [notice “hat” notation meaning “estimate of”]

If an estimator is unbiased, then it recovers the true value on

average over many realisations of the data, (17) =V [notice
notation (... ) meaning “average over many experiments”]

. 1 . .
[Small print: we can show that the N1 factor in IV is needed to ensure it
is unbiased (because x is estimated from the data itself).]



Optimal combination of data

A common statistical task is to combine different input
data into a single measurement

* |n this process we may give inputs different weights




Optimal combination of data

Suppose we have N independent estimates x; of some
quantity y, which have varying errors g;. What is our best
combined estimate of y?

N 2

: ~ 1
A simple average, ¥ = —),i—1 X;*

N

This is not the optimal combination, because we want to
give more weight to the more precise estimates. Let’s
weight each estimate by w;:

2 wi {x)

S K=Y

[Small print: this estimate is unbiased, since (y) =



Optimal combination of data

* The weights which minimize the combined error are
inverse-variance weights w; = 1/0;°

9 = ZIiV:1 xi/UiZ
ZIiV:1 1/01'2

* |n this case, the variance in the combined estimate is:

N
1 1

Var(9) ~ Lio?

O'l'z

e [Small print: this approach is only helpful if the errors in the data are
dominated by statistical, not systematic errors]



Worked examples

* We have N = 10 measurements of a variable x; =
(7.6,5.8,8.0,6.9,7.2,7.5,6.4,8.1,6.3,7.0). Estimate the
mean, variance and median of this dataset. What are the
errors in your estimates?

* We have N = 5 measurements of a quantity: (7.4 +
2.0,6.5+1.1,43+1.7,55+0.8,6.0 + 2.5). Whatis
the optimal estimate of this quantity and the error in that
estimate?

e A further measurement 3.0 + 0.2 is added. How should
our estimate change?

 How can we check the reliability of the initial 5
measurements?



Probability distributions

* A probability distribution, P(x), is a function which
assigns a probability for each particular value (or range of
values) of a continuous variable x

* Must be normalized: ffoooP(x) dx =1

* Probability in range [x{, x,] = f;lz P(x)dx —
* A probability distribution may be quantified by its ...
* Meanu =% = (x) = ffoooxP(x) dx

* Variance g% = f_oooo(x — 1)? P(x) dx = (x?) — (x)?



Probability distributions

o E())(ample probability distribution u=2.8, c=1.7
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Probability distributions

Certain types of variables have known distributions:

Binomial distribution

Poisson distribution

Gaussian or Normal distribution Standard Deviations
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The Binomial distribution

e Applies in problems where there is a

random process with two possible

outcomes with probabilitiespand 1 —p \

 Example: tossing a coin

* |f we have N trials, and the probability of success in each

&

is p, then the probability of obtaining n successes is:

PBinomial (n) =

N

n!'(N —n)!

p" (1 —p)N "

* The mean and variance of this distribution are n = pN,

Var(n) = Np(1 —p)




The Binomial distribution
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The Poisson distribution

Applies to a discrete random
process where we are counting
something in a fixed interval

Example: radioactive decay,
photons arriving at a CCD

o

&

3
-

If the mean number of events expected in some interval is
i, the probability of observing n events is

Ppoisson (n) =

ute

nl

The mean and variance of this distribution are equal, 1 =

Var(n) = u



The Poisson distribution
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Example Poisson distribution: u=5

“In an interval where |
expect 5 events to occur
on average, how many

occur in practice?”




Poisson errors

The ultimate limit to any counting experiment

* |f an individual bin of data contains N events (for example,
a CCD pixel contains N photons), we can use the Poisson

variance o2 = u to place a Poisson error v/N in that bin

Count =N ix/ﬁ

e Small print: Assumes the mean count is the observed count
* Bad approximation for low numbers (e.g. N = 0)

* Bad approximation if the fluctuations are dominated by other
processes (e.g. read noise, galaxy clustering)



The Gaussian distribution

* The Gaussian (or “normal”) probability
distribution for a variable x, with mean
u and standard deviation o is:

3 2 -1 0 1 2 3
O- 2 T[ Standard Deviabons

Pcaussian (x) =

* Why is this such an ubiquitous and important probability
distribution?

* |tis the high-N limit for the Binomial and Poisson
distributions

* The central limit theorem says that if we average together
variables drawn many times from any probability
distribution, the resulting average will follow a Gaussian!



The Gaussian distribution

Example Gaussian distribution: y=2, 0=0.5
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Confidence regions and tails

* The Gaussian (or “normal”) probability distribution for a
variable x, with mean u and standard deviation o is:

1 1x—p\?
e_i(—)
oV 2T

o

PGaussian (x) =

* The probability contained within +1,2,3 standard
deviations is (68.27,95.45,99.73)% (etc.)

* This is often used as shorthand for the confidence of a
statement: e.g., 3-0 confidence implies that the statement
is expected to be true with a probability of 99.73%
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Frequentist and Bayesian frameworks

DID THE SUN JUST EXPLODE?
(ITS NIGHT, S0 WERE NOT SURE.)
* In the framework of statistics, \HETER FE S0 Hi COE NOP.

. , MROWS TWo DICE. IF THEY
we will often hear about ( TR COrE P S, T LES O U6
ug . “g - Yy OTHERWISE, IT TELLS THE TRUH.

requentist” or “Bayesian o 7
methods. In the next few slides ) (R
we’ll discuss what this means. L?‘JEE O

ﬁ

FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:

* Neither framework is “right” or
“wrong”, as such

THE PROBABUTY OF THIS RESULT
. . . HAPPENING BY CHANCE 15 3;=0027. BET YOU $50
* As usual with statistics, it comes  |sne p<oos T conawe IT HASNT,
THAT THE SUN HAS EXPLODED. )

down to the question we want \ O
to answer ...
Credit: xkcd.com i% ;i k




Frequentist and Bayesian frameworks

* Frequentist statistics assign
probabilities to a measurement, i.e.
they determine P(datajmodel)

* We are defining probability by
imaging a series of hypothetical
experiments, repeatedly sampling
the population (which have not
actually taken place)

Assuming these dice
are unbiased, what is
the probability of

* Philosophy of science: we attempt to rolling different
“rule out” or falsify models, if values?
P(data|model) is too small




Frequentist and Bayesian frameworks

* Bayesian statistics assign
probabilities to a model, i.e. they
give us tools for calculating
P(model|data)

* We update the model probabilities
in the light of each new dataset
(rather than imagining many
hypothetical experiments)

* Philosophy of science: we do not
“rule out” models, just determine
their relative probabilities

Assuming | roll a
particular spread of
different values,
what is the
probability of the
dice being unbiased?




Frequentist and Bayesian frameworks

* The concept of conditional probability is central to
understanding Bayesian statistics

* P(A|B) means “the probability of A on the condition
that B has occurred”

* Adding conditions makes a huge difference to evaluating
probabilities

* On arandomly-chosen day in CAS, P(free pizza) ~ 0.2

* P(free pizza|Monday) ~ 1, P(free pizza|Tuesday) ~ 0



Frequentist and Bayesian frameworks

* The important formula for relating
conditional probabilities is Bayes’
theorem:

P(B|A) P(A)

P (B) (Obligatory portrait of the
Reverend Bayes!)

P(A|B) =

e Small print: this formula can be derived by just writing down the joint
probability of both A and B in 2 ways:

P(ANB) = P(A|B) P(B) = P(B|A) P(A)

* Re-writing Bayes’ theorem for science:

P(datalmodel) P(model)
P(data)

P(model|data) =




Worked example

e |observe 100 galaxies, 30 of which are AGN. What is the
best estimate of the AGN fraction and its error?

NagN 30

* Solution 1: Estimate AGN fraction p = v = To0 = 0.3
total

* There are 2 possible outcomes (“AGN” or “not an AGN”)
so the binomial distribution applies

* Estimate the errorin Nyy as the standard deviation in

the binomial distribution = \/Nyo¢q: P(1 — p) =

4.6

V100x0.3%0.7 = 4.6, so error inp = oo = 0.046

* Answer:p =0.3 +0.046



Worked example

| observe 100 galaxies, 30 of which are AGN. What is the
best estimate of the AGN fraction and its error?

Solution 2: Use Bayes’ theorem P(p|D) « P(D|p) P(p)

P(p|D) is the probability distribution of p given the data D, the
guantity we aim to determine

P(D|p) is the probability of the data for a given value of p, which is
given by the Binomial distribution as Pginomiqi(m = 30|N = 100, p)

P(p) is the prior in p, which we take as a uniform distribution
betweenp =0andp =1

Determining P(p|D) and normalising we obtain ...



Worked example

e |observe 100 galaxies, 30 of which are AGN. What is the
best estimate of the AGN fraction and its error?

10

Probability density

0 Ll T T T T T T
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AGN fraction



Activity

 Asurveyof area A = 1 deg? finds N = 20 quasars. What
is the number of quasars per square degree, o ?

0.10

o o
o o
(@)] (o]

Probability density
o
o
BN

0.02 -

0.00
oldeg~?]



Monte Carlo simulations

* A Monte Carlo simulation is a computer model of an
experiment in which many random realizations of the
results are created and analysed like the real data
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Monte Carlo simulations

A Monte Carlo simulation is a computer model of an
experiment in which many random realizations of the
results are created and analysed like the real data

* This is the most useful statistical tool you’ll learn!

* |t allows us to determine the statistics of a problem
without any analytic calculations (if we can model it)

e Statistical errors can be obtained from the distribution of
fitted parameters over the realizations

* Systematic errors can be explored by comparing the mean
fitted parameters to their known input values



Activity: Monte Carlo methods

* Solve the following problem by Monte Carlo methods: I'm
dealt 5 playing cards from a normal deck (i.e. 13 different
values in 4 suits). What is the probability of obtaining “three
of a kind” (i.e. 3 of my 5 cards having the same value?)




Activity: central limit theorem

* Write a code that draws n values of x from an exponential
distribution P(x) « e™ (where 0 < x < ), and
computes their arithmetic mean u. Repeat this process m
times, and plot the probability distribution of i across the

m realisations. Run this experiment for values n =
1,2,5,10,20,50.

* Hint: to do a single draw, select a uniform random number y in the
range 0 < y < 1, then x = —In y [why does this work?]
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At the end of this class you should be able to ...

e ...determine summary statistics for datasets and their errors

... optimally combine data

... apply probability distributions for Gaussian, Binomial and
Poisson statistics

e ...compare the Frequentist and Bayesian frameworks for
statistical analysis

... solve statistical problems using Monte Carlo techniques



