
Class	1:	Probability	&	Statistics

In	this	class	we	will	review	how	statistics	are	
used	to	summarize	data,	special	probability	
distributions,	their	use	in	simple	applications	
using	Frequentist	and	Bayesian	methods,	and	

Monte	Carlo	techniques



At	the	end	of	this	class	you	should	be	able	to	…

• … determine	summary	statistics	for	datasets	and	their	errors

• … optimally	combine	data

• ...	apply	probability	distributions	for	Gaussian,	Binomial	and	
Poisson	statistics

• … compare	the	Frequentist	and	Bayesian	frameworks	for	
statistical	analysis

• … solve	statistical	problems	using	Monte	Carlo	techniques

Class	1:	Probability	&	Statistics
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The	process	of	science

Obtain
measurements

Analyze	data

Conclude
(test	hypothesis,

change	probabilities)

Design	a	question



The	point	of	statistics

• Statistics	allows	us	to	formulae	the	logic	of	what we	are	
doing	and	why.		It	allows	us	to	make	precise	statements.

• Statistics	allows	us	to	quantify	the	uncertainty in	any	
measurement	(which	should	always	be	stated)

• Statistics	allows	us	to	avoid	pitfalls	such	as	confirmation	
bias	(distortion	of	conclusions	by	preconceived	beliefs)	

“If	your	experiment	needs	statistics,	you	ought
to	have	done	a	better	experiment”	(E.Rutherford)

“A	body	of	methods	for	making	wise	decisions
in	the	face	of	uncertainty”	(W.Wallis)



Common	uses	of	statistics

• Measuring	a	quantity	(“parameter	
estimation”):	given	some	data,	what	is	our	
best	estimate	of	a	particular	parameter?		
What	is	the	uncertainty	in	our	estimate?

• Searching	for	correlations:	are	two	
variables	we	have	measured	correlated	
with	each	other,	implying	a	possible	
physical	connection?

• Testing	a	model	(“hypothesis	testing”):	
given	some	data	and	one	or	more	models,	
are	our	data	consistent	with	the	models?		
Which	model	best	describes	our	data?



Summary	statistics	and	their	errors

• A	statistic is	a	quantity	which	summarizes	our	data

Image	credit:	pythonstatistics.net



Summary	statistics	and	their	errors

• A	statistic is	a	quantity	which	summarizes	our	data

• I	have	a	sample	of	𝑁 independent	estimates	𝑥# of	some	
quantity,	how	can	I	summarize	them?

• The	mean (typical	value):	𝑥̅ = &
'
∑ 𝑥#'
#)&

• The	median (middle	value	when	ranked)

• The	standard	deviation	𝜎 (spread)	or	variance:

• [Small	print:	Watch	out	for	factor	of	𝑁 − 1!		(see	below)]

Var 𝑥 = 𝜎0(𝑥) =
1

𝑁 − 13 𝑥# − 𝑥̅ 0
'

#)&



Summary	statistics	and	their	errors

• We	can	quote	an	error in	each	of	these	statistics:

• Error	in	the	mean	is	standard	deviation	divided	by	 𝑵� (as	I	
increase	the	sample	size,	the	error	in	the	mean	improves)

• Error	in	the	median	= 1.25	 :
'�

• Error	in	the	variance	= 𝜎0 0
';&

�

• [Small	print:	the	error	in	the	mean	holds	for	all	probability	
distributions.		The	other	two	relations	assume	a	Gaussian	distribution.]

Error	in	mean =
𝜎
𝑁�



Estimators	and	bias

• These	formulae	are	a	good	example	of	estimators,	
combinations	of	data	which	measure	underlying	quantities

• E.g.,	the	estimator	𝑉C = &
';&

∑ 𝑥# − 𝑥̅ 0'
#)& 	measures	the	

underlying	variance	𝑉		[notice	“hat”	notation	meaning	“estimate	of”]

• If	an	estimator	is	unbiased,	then	it	recovers	the	true	value	on	
average	over	many	realisations	of	the	data,	 𝑉C = 𝑉		[notice	
notation	 … 	meaning	“average	over	many	experiments”]

• [Small	print:	we	can	show	that	the	 &
';&

	factor	in	𝑉C 	is	needed	to	ensure	it	
is	unbiased	(because	𝑥̅	is	estimated	from	the	data	itself).]



Optimal	combination	of	data

• A	common	statistical	task	is	to	combine different	input	
data	into	a	single	measurement

• In	this	process	we	may	give	inputs	different	weights



Optimal	combination	of	data

• Suppose	we	have	𝑁 independent	estimates	𝑥# of	some	
quantity	𝑦,	which	have	varying	errors	𝜎#.		What	is	our	best	
combined	estimate	of	𝑦?

• A	simple	average,	𝑦F = &
'
∑ 𝑥#'
#)& ?

• This	is	not	the	optimal	combination,	because	we	want	to	
give	more	weight	to	the	more	precise	estimates.		Let’s	
weight	each	estimate	by	𝑤#:

• [Small	print:	this	estimate	is	unbiased,	since	 𝑦F = ∑ HI	 J�
I
∑ HI�
I

= 𝑥 = 𝑦]

𝑦F =
∑ 𝑤#	𝑥#'
#)&
∑ 𝑤#'
#)&



Optimal	combination	of	data

• The	weights	which	minimize	the	combined	error	are	
inverse-variance	weights	𝑤# = 1/𝜎#0

• In	this	case,	the	variance	in	the	combined	estimate	is:

• [Small	print:	this	approach	is	only	helpful	if	the	errors	in	the	data	are	
dominated	by	statistical,	not	systematic	errors]

𝑦F =
∑ 𝑥#/𝜎#0'
#)&
∑ 1/𝜎#0'
#)&

1
Var(𝑦F) =3

1
𝜎#0

'

#)&



Worked	examples

• We	have	𝑁 = 10measurements	of	a	variable	𝑥# =
(7.6, 5.8, 8.0, 6.9, 7.2, 7.5, 6.4, 8.1, 6.3, 7.0).		Estimate	the	
mean,	variance	and	median	of	this	dataset.		What	are	the	
errors	in	your	estimates?

• We	have	𝑁 = 5measurements	of	a	quantity:	(7.4 ±
2.0, 6.5 ± 1.1, 4.3 ± 1.7, 5.5 ± 0.8, 6.0 ± 2.5).		What	is	
the	optimal	estimate	of	this	quantity	and	the	error	in	that	
estimate?

• A	further	measurement	3.0 ± 0.2 is	added.			How	should	
our	estimate	change?

• How	can	we	check	the	reliability	of	the	initial	5	
measurements?



Probability	distributions

• A	probability	distribution,	𝑃(𝑥), is	a	function	which	
assigns	a	probability	for	each	particular	value	(or	range	of	
values)	of	a	continuous	variable	𝑥

• Must	be	normalized:	∫ 𝑃 𝑥 	𝑑𝑥X
;X = 1

• Probability	in	range	 𝑥&, 𝑥0 = ∫ 𝑃 𝑥 	𝑑𝑥JY
JZ

• A	probability	distribution	may	be	quantified	by	its	…

• Mean 𝜇 = 𝑥̅ = 𝑥 = ∫ 𝑥	𝑃 𝑥 	𝑑𝑥X
;X

• Variance 𝜎0 = ∫ 𝑥 − 𝜇 0	𝑃 𝑥 	𝑑𝑥X
;X = 𝑥0 − 𝑥 0



Probability	distributions

For	a	general	skewed	distribution:

• The	mean	is	not	necessarily	the	peak

• 𝜇 ± 𝜎 does	not	necessarily	contain	
68%	of	the	probability



Probability	distributions

• Certain	types	of	variables	have	known	distributions:

• Binomial distribution

• Poisson distribution

• Gaussian or	Normal distribution



The	Binomial	distribution

• If	we	have	𝑁 trials,	and	the	probability	of	success	in	each	
is	𝑝,	then	the	probability	of	obtaining	𝑛 successes	is:

• The	mean and	variance of	this	distribution	are	𝑛̂ = 𝑝𝑁,	
Var 𝑛 = 𝑁𝑝(1 − 𝑝)

𝑃_`abc`de 𝑛 = 	
𝑁!

𝑛! 𝑁 − 𝑛 !	𝑝
g	(1 − 𝑝)';g

• Applies	in	problems	where	there	is	a	
random	process	with	two	possible	
outcomes	with	probabilities	𝑝 and	1 − 𝑝

• Example:	tossing	a	coin



The	Binomial	distribution

“In	a	process	with	a	20%	
chance	of	success,	how	
many	successes	would	
result	from	10	tries?”



The	Poisson	distribution

• If	the	mean	number	of	events	expected	in	some	interval	is	
𝜇,	the	probability	of	observing	𝑛 events	is

• The	mean and	variance of	this	distribution	are	equal,	𝑛̂ =
Var 𝑛 = 𝜇

𝑃hb`iiba 𝑛 = 	
𝜇g	𝑒;k

𝑛!	

• Applies	to	a	discrete	random	
process	where	we	are	counting	
something	in	a	fixed	interval

• Example:	radioactive	decay,	
photons	arriving	at	a	CCD



The	Poisson	distribution

“In	an	interval	where	I	
expect	5	events	to	occur	
on	average,	how	many	
occur	in	practice?”



Poisson	errors

• The	ultimate	limit	to	any	counting	experiment

• If	an	individual	bin	of	data	contains	𝑁 events	(for	example,	
a	CCD	pixel	contains	𝑁 photons),	we	can	use	the	Poisson	
variance	𝜎0 = 𝜇 to	place	a	Poisson	error 𝑁� in	that	bin

Count = 𝑁 ± 𝑁�

• Small	print:	Assumes	the	mean	count	is	the	observed	count

• Bad	approximation	for	low	numbers	(e.g.	𝑁 = 0)	

• Bad	approximation	if	the	fluctuations	are	dominated	by	other	
processes	(e.g.	read	noise,	galaxy	clustering)



The	Gaussian	distribution

• Why	is	this	such	an	ubiquitous	and	important	probability	
distribution?

• It	is	the	high-𝑵 limit	for	the	Binomial	and	Poisson	
distributions

• The	central	limit	theorem	says	that	if	we	average	together	
variables	drawn	many	times	from	any	probability	
distribution,	the	resulting	average	will	follow	a	Gaussian!

𝑃odpii`da 𝑥 = 	
1

𝜎 2𝜋� 	
𝑒;

&
0
J;k
:

Y

• The	Gaussian (or	“normal”)	probability	
distribution	for	a	variable	𝑥,	with	mean	
𝜇 and	standard	deviation	𝜎 is:



The	Gaussian	distribution

Dashed	vertical	lines	
are	spaced	every	1	
standard	deviation



Confidence	regions	and	tails

• The	Gaussian (or	“normal”)	probability	distribution	for	a	
variable	𝑥,	with	mean	𝜇 and	standard	deviation	𝜎 is:

• The	probability	contained	within	±1,2,3 standard	
deviations	is	 68.27, 95.45, 99.73 % (etc.)

• This	is	often	used	as	shorthand	for	the	confidence	of	a	
statement:	e.g.,	3-𝜎 confidence	implies	that	the	statement	
is	expected	to	be	true	with	a	probability	of	99.73%

𝑃odpii`da 𝑥 = 	
1

𝜎 2𝜋� 	
𝑒;

&
0
J;k
:

Y



Confidence	regions	and	tails



Frequentist	and	Bayesian	frameworks

• In	the	framework	of	statistics,	
we	will	often	hear	about	
“Frequentist”	or	“Bayesian”	
methods.			In	the	next	few	slides	
we’ll	discuss	what	this	means.

• Neither	framework	is	“right”	or	
“wrong”,	as	such

• As	usual	with	statistics,	it	comes	
down	to	the	question	we	want	
to	answer	…

Credit:	xkcd.com



Frequentist	and	Bayesian	frameworks

• Frequentist	statistics	assign	
probabilities	to	a	measurement,	i.e.	
they	determine	𝑷(𝐝𝐚𝐭𝐚|𝐦𝐨𝐝𝐞𝐥)

• We	are	defining	probability	by	
imaging	a	series	of	hypothetical	
experiments,	repeatedly	sampling	
the	population	(which	have	not	
actually	taken	place)

• Philosophy	of	science:	we	attempt	to	
“rule	out”	or	falsify	models,	if	
𝑃(𝑑𝑎𝑡𝑎|𝑚𝑜𝑑𝑒𝑙) is	too	small

Assuming	these	dice	
are	unbiased,	what	is	
the	probability	of	
rolling	different	
values?



Frequentist	and	Bayesian	frameworks

• Bayesian	statistics	assign	
probabilities	to	a	model,	i.e.	they	
give	us	tools	for	calculating	
𝑷(𝐦𝐨𝐝𝐞𝐥|𝐝𝐚𝐭𝐚)

• We	update	the	model	probabilities	
in	the	light	of	each	new	dataset	
(rather	than	imagining	many	
hypothetical	experiments)

• Philosophy	of	science:	we	do	not	
“rule	out”	models,	just determine	
their	relative	probabilities

Assuming	I	roll	a	
particular	spread	of	
different	values,	
what	is	the	
probability	of	the	
dice	being	unbiased?



Frequentist	and	Bayesian	frameworks

• The	concept	of	conditional	probability	is	central	to	
understanding	Bayesian	statistics

• 𝑃(𝐴|𝐵)means	“the	probability	of	𝑨 on	the	condition	
that	𝑩 has	occurred”

• Adding	conditions	makes	a	huge	difference	to	evaluating	
probabilities

• On	a	randomly-chosen	day	in	CAS,	𝑃 free	pizza 	~	0.2

• 𝑃 free	pizza|Monday 	~	1,	𝑃 free	pizza|Tuesday 	~	0



Frequentist	and	Bayesian	frameworks

• The	important	formula	for	relating	
conditional	probabilities	is	Bayes’	
theorem:

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 	𝑃(𝐴)

𝑃(𝐵) (Obligatory	portrait	of	the	
Reverend	Bayes!)

• Small	print:	this	formula	can	be	derived	by	just	writing	down	the	joint	
probability	of	both	𝐴 and	𝐵 in	2	ways:

• Re-writing	Bayes’	theorem	for	science:

𝑃(𝐴 ∩ 𝐵) = 𝑃 𝐴 𝐵 	𝑃 𝐵 = 𝑃 𝐵 𝐴 	𝑃(𝐴)

𝑃 model data =
𝑃 data model 	𝑃(model)

𝑃(data)



Worked	example

• I	observe	100	galaxies,	30	of	which	are	AGN.		What	is	the	
best	estimate	of	the	AGN	fraction	and	its	error?

• Solution	1:	Estimate	AGN	fraction	𝑝 = '���
'�����

= ��
&��

= 0.3

• There	are	2	possible	outcomes	(“AGN”	or	“not	an	AGN”)	
so	the	binomial	distribution	applies

• Estimate	the	error	in	𝑁��' as	the	standard	deviation	in	
the	binomial	distribution	= 𝑁�����	𝑝(1 − 𝑝)

� =
100×0.3×0.7� = 4.6,	so	error	in	𝑝 =  .¡

&��
= 0.046

• Answer:	𝒑 = 𝟎. 𝟑 ± 𝟎. 𝟎𝟒𝟔



• I	observe	100	galaxies,	30	of	which	are	AGN.		What	is	the	
best	estimate	of	the	AGN	fraction	and	its	error?

• Solution	2:	Use	Bayes’	theorem	𝑃 𝑝 𝐷 ∝ 𝑃 𝐷 𝑝 	𝑃(𝑝)

• 𝑃 𝑝 𝐷 is	the	probability	distribution	of	𝑝 given	the	data	𝐷,	the	
quantity	we	aim	to	determine

• 𝑃(𝐷|𝑝) is	the	probability	of	the	data	for	a	given	value	of	𝑝,	which	is	
given	by	the	Binomial	distribution	as	𝑃©#g�ª#��(𝑛 = 30|𝑁 = 100, 𝑝)

• 𝑃 𝑝 is	the	prior	in	𝑝,	which	we	take	as	a	uniform	distribution	
between	𝑝 = 0 and	𝑝 = 1

• Determining	𝑃 𝑝 𝐷 and	normalising we	obtain	…

Worked	example



• I	observe	100	galaxies,	30	of	which	are	AGN.		What	is	the	
best	estimate	of	the	AGN	fraction	and	its	error?

Worked	example



• A	survey	of	area	𝐴 = 1	deg0 finds	𝑁 = 20 quasars.		What	
is	the	number	of	quasars	per	square	degree,	𝜎?

Activity



Monte	Carlo	simulations

• A	Monte	Carlo	simulation	is	a	computer	model	of	an	
experiment	in	which	many	random	realizations	of	the	
results	are	created	and	analysed	like	the	real	data



Monte	Carlo	simulations

• A	Monte	Carlo	simulation	is	a	computer	model	of	an	
experiment	in	which	many	random	realizations	of	the	
results	are	created	and	analysed	like	the	real	data

• This	is	the	most	useful	statistical	tool	you’ll	learn!

• It	allows	us	to	determine	the	statistics	of	a	problem	
without any	analytic	calculations	(if	we	can	model	it)

• Statistical	errors	can	be	obtained	from	the	distribution	of	
fitted	parameters over	the	realizations

• Systematic	errors	can	be	explored	by	comparing	the	mean	
fitted	parameters	to	their	known	input	values



• Solve	the	following	problem	by	Monte	Carlo	methods:	I’m	
dealt	5	playing	cards	from	a	normal	deck	(i.e.	13	different	
values	in	4	suits).		What	is	the	probability	of	obtaining	“three	
of	a	kind”	(i.e.	3	of	my	5	cards	having	the	same	value?)

Activity:	Monte	Carlo	methods



• Write	a	code	that	draws	𝑛 values	of	𝑥 from	an	exponential	
distribution	𝑃(𝑥) ∝ 𝑒;J (where	0 < 𝑥 < ∞),	and	
computes	their	arithmetic	mean	𝜇.		Repeat	this	process	𝑚
times,	and	plot	the	probability	distribution	of	𝜇 across	the	
𝑚 realisations.		Run	this	experiment	for	values	𝑛 =
1, 2, 5, 10, 20, 50.

• Hint:	to	do	a	single	draw,	select	a	uniform	random	number	𝑦 in	the	
range	0 < 𝑦 < 1,	then	𝑥 = − ln 𝑦 [why	does	this	work?]

Activity:	central	limit	theorem



Activity:	central	limit	theorem



Summary

At	the	end	of	this	class	you	should	be	able	to	…

• … determine	summary	statistics	for	datasets	and	their	errors

• … optimally	combine	data

• ...	apply	probability	distributions	for	Gaussian,	Binomial	and	
Poisson	statistics

• … compare	the	Frequentist	and	Bayesian	frameworks	for	
statistical	analysis

• … solve	statistical	problems	using	Monte	Carlo	techniques


