
Module 2: Numerical methods

Week 7 Tutorial

Numerical stability and 
boundary value problems



Key goals for the class

1. How do we determine the step size that allows a 
finite difference method to be stable? 

2. How do we solve differential equations with 
boundary values using finite difference and matrix 
methods?



Stability of solutions

What is meant by an “unstable” finite 
difference solution?

What could cause this to happen?



Stability of solutions

In an unstable finite difference approximation, 
numerical errors compound such that the solution 
becomes exponentially less accurate

Commonly, 
instability results 
if the step size is 
too high



Stability of solutions
We can test the stability of a numerical solution by a qualitative 
comparison with an exact decaying solution:

𝑑𝑓
𝑑𝑥 = 𝜆𝑓 → 𝑓 ∝ 𝑒!" → decays if Re 𝜆 < 0

Express #$
#"
= 𝜆𝑓 using finite differences with step size ℎ, and ask 

for what values of 𝒉 will the numerical solution decay?

Method Equation Stability condition

Forward Euler
𝑓!"# − 𝑓!

ℎ = 𝜆𝑓! 1 + 𝜆ℎ < 1

Backward Euler
𝑓!"# − 𝑓!

ℎ = 𝜆𝑓!"# 1 − 𝜆ℎ > 1

Modified Euler
𝑓!"# − 𝑓!

ℎ =
𝜆
2 𝑓! + 𝑓!"# Re 𝜆ℎ < 0



Tutorial question

Try Q1 on the tutorial sheet (stability of solutions).

Hint for (b) and (c): The matrix equations are eigenvalue problems because if 
$&⃗
$'
= 𝐀𝑥⃗, then substituting 𝑥⃗ = 𝑐𝑒(' leads to 𝐀𝑐 = 𝜆𝑐 – the stability 

condition needs to apply separately for every eigenvalue



Boundary value problems

Sometimes we need to solve differential equations 
where conditions are specified at the boundaries.

𝑥

𝑦(𝑥)

e.g. Solve   #
!%
#"!

+ #%
#"
− 𝑦 = 𝑥& where   𝒚 𝟏 = 𝟐 and   𝒚 𝟐 = 𝟎

𝑥 = 1 𝑥 = 2

𝑦 = 2

𝑦 = 0

What is 
𝑦(𝑥) in 
this 
range?



Boundary value problems

If we create a solution on a mesh, this naturally leads to 
a matrix formulation.

Solve   #
!%
#"!

+ #%
#"
− 𝑦 = 𝑥& where   𝒚 𝟏 = 𝟐 and   𝒚 𝟐 = 𝟎

Method:
• Replace the derivatives with finite differences
• Group the terms in 𝑦!)#, 𝑦!, 𝑦!"#
• Write the resulting equation as a matrix

→
𝑦'() − 2𝑦' + 𝑦'*)

ℎ&
+

𝑦'() − 𝑦'*)
2ℎ

− 𝑦' = 𝑥'&

→
1
ℎ& +

1
2ℎ 𝑦'() −

2
ℎ& + 1 𝑦' +

1
ℎ& −

1
2ℎ 𝑦'*) = 𝑥'&



Tutorial question

Try Q2 on the tutorial sheet (boundary value example).



Tutorial question

Try Q3 on the tutorial sheet (if time).



That’s all for today!


