Module 2: Numerical methods Week 6 Tutorial

Differential equations on a finite grid

Key goals for the class

- 1. How do we express a differential equation on a finite grid?
- 2. How do we use finite difference methods to solve these differential equations given initial values?

Differential equations

Fundamental equations describing variables in physics, maths or engineering

Discrete mesh

Grid needed to solve these problems on a computer

An initial value problem is a differential equation for y(x) with initial conditions given for y, such as

$$\frac{dy}{dx} = 1 + xy, \qquad y(2) = 0$$

We want to approximate y at nearby values to x=2 using a discrete mesh. Our method:

- 1. Replace the derivative with a finite difference approximation in terms of the function values at mesh points i and i+1
- 2. Re-arrange the equation to get y_{i+1} in terms of y_i , x_i and x_{i+1}
- 3. Evaluate recursively for each successive mesh point

We can use **finite differences** to replace

$$\frac{dy}{dx} \rightarrow \frac{y_{i+1} - y_i}{h}$$

We can apply this derivative at point x_i , point x_{i+1} or halfway in between, $\frac{1}{2}(x_i + x_{i+1})$, creating these methods:

Forward Euler Method: $y \rightarrow y_i$

Backward Euler Method: $y \rightarrow y_{i+1}$

Modified/Central Euler Method: $y \to \frac{1}{2}(y_i + y_{i+1})$

Let's see those methods applied to our initial problem:

$$\frac{dy}{dx} = 1 + xy, \qquad y(2) = 0$$

Method	Application point	Resulting equation
Forward Euler Method	i	$\frac{y_{i+1} - y_i}{h} = 1 + x_i y_i$
Backward Euler Method	i + 1	$\frac{y_{i+1} - y_i}{h} = 1 + x_{i+1} y_{i+1}$
Modified Euler Method	Mid-point	$\frac{y_{i+1} - y_i}{h} = 1 + \frac{1}{2}(x_i y_i + x_{i+1} y_{i+1})$

Then re-arrange to get y_{i+1} in terms of y_i !

Try Q1(a) on the tutorial sheet (forward Euler method).

1. Consider the initial value problem

$$\frac{dy}{dx} = 1 + xy, \ y(2) = 0.$$

(a) Calculate the value for y(2.2) using the forward Euler method with two different values of the step h = 0.2 and h = 0.1. Give the answer correct to three decimal places.

On left-hand side: $\frac{dy}{dx} \rightarrow \frac{y_{i+1} - y_i}{h}$

On right-hand side: $xy \rightarrow x_i y_i$

Try Q1(b) on the tutorial sheet (backward Euler method).

1. Consider the initial value problem

$$\frac{dy}{dx} = 1 + xy, \ y(2) = 0.$$

(b) Calculate the value for y(2.2) using the backward Euler method with h = 0.2. Give the answer correct to three decimal places. The backward Euler's method for y' = f(x, y(x)) is given by

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}), x_{n+1} = x_n + h.$$

On left-hand side: $\frac{dy}{dx} \rightarrow \frac{y_{i+1} - y_i}{h}$

On right-hand side: $xy \rightarrow x_{i+1}y_{i+1}$

Try Q1(c) on the tutorial sheet (modified Euler method).

1. Consider the initial value problem

$$\frac{dy}{dx} = 1 + xy, \ y(2) = 0.$$

(c) Calculate the value for y(2.2) using the modified Euler method with h = 0.2. Give the answer correct to three decimal places. The modified Euler method for y' = f(x, y(x)) is given by

$$y_{n+1} = y_n + \frac{h}{2} (f(x_{n+1}, y_{n+1}) + f(x_n, y_n)), \quad x_{n+1} = x_n + h.$$

On left-hand side: $\frac{dy}{dx} \rightarrow \frac{y_{i+1} - y_i}{h}$

On right-hand side:
$$xy \rightarrow \frac{1}{2}(x_iy_i + x_{i+1}y_{i+1})$$

Try Q2 on the tutorial sheet (backward Euler method).

• 2. The initial value problem (IVP)

$$y' = f(x, y) = (1 + x^2)y^2$$
, $y(0) = -1$

is solved using the backward Euler method with step h = 0.1. Take one step of the method to determine the approximate value of y(0.1). Round correct to three decimal places.

On left-hand side: $\frac{dy}{dx} \rightarrow \frac{y_{i+1} - y_i}{h}$

On right-hand side: $x \rightarrow x_{i+1}$, $y \rightarrow y_{i+1}$

Try Q3 on the tutorial sheet (forward Euler method).

• 3. The initial value problem (IVP)

$$y' = f(x, y) = -y, y(a) = b$$

is solved using the forward Euler method. Derive the formulae for y_n for arbitrary n and arbitrary step h. What can you say about $\lim_{n\to\infty} y_n$? Determine the maximal possible value of h such that $\lim_{n\to\infty} y_n = 0$.

On left-hand side: $\frac{dy}{dx} \rightarrow \frac{y_{i+1} - y_i}{h}$

On right-hand side: $y \rightarrow y_i$

Try Q1(d) on the tutorial sheet (if time).

1. Consider the initial value problem

$$\frac{dy}{dx} = 1 + xy, \ y(2) = 0.$$

(d) Calculate the value for y(2.2) correct to three decimal places, using the fourth-order Runge-Kutta method with h = 0.2 The fourth-order Runge-Kutta scheme is given by

$$k_1 = f(x_n, y_n),$$

 $k_2 = f\left(x_n + \frac{h}{2}, y_n + k_1 \frac{h}{2}\right),$
 $k_3 = f\left(x_n + \frac{h}{2}, y_n + k_2 \frac{h}{2}\right),$
 $k_4 = f\left(x_n + h, y_n + h k_3\right),$
 $y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4),$
 $x_{n+1} = x_n + h, (n = 0, 1, 2, ...)$

That's all for today!