Module 2: Numerical methods Week 5 Tutorial

Finite difference methods

In-class test coming up on Thursday!

Test is on Week 1-4 content (matrices and eigenvalues):

- Find determinant, trace, eigenvalues, eigenvectors of a matrix
- Express determinant/trace in terms of eigenvalues
- Normalise eigenvectors and test for orthogonality
- Write down modal matrix and create diagonal matrix
- Express a quadratic curve as a matrix, classify the curve using its eigenvalues, and identify its principal axes
- Solve a coupled differential equation using matrix methods, given some initial values
- Express a higher-order differential equation in matrix form

Key goals for today's class

- 1. How do we extrapolate a function using a **Taylor** series expansion?
- 2. What is the difference between a **continuous function** and a **discrete function**?
- 3. How do we **approximate the derivatives** of a discrete function?

Approximating a function

What does a "Taylor series" (sometimes called "Maclaurin series") look like?

Why is it useful?

Approximating a function

Taylor series: A function may be extrapolated from a point x_0 to other x's if we know its derivatives at x_0 :

$$f(x) = f(x_0) + f'(x_0) \left(x - x_0\right) + f''(x_0) \frac{1}{2} (x - x_0)^2 + \cdots$$

Remaining terms increase the accuracy ...

Try Q2 on the tutorial sheet (Taylor series).

- 2. Given f(1) = 1, f(0.9) = 0.9 and f(1.2) = 0.9.
 - (a) Write down the first three terms of the Taylor series for f(x) about x = 1.
 - (b) Use the Taylor series from part (a) to express f(0.9) and f(1.2).
 - (c) Determine f'(1) and f"(1).

Hint:
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0) \frac{1}{2}(x - x_0)^2$$

Approximating a function

What is the difference between a continuous function and a discrete function?

Why do we need to use discrete functions for anything?

Function on a discrete mesh

A continuous function is defined at every point x (that is, an infinite number of points)

For a computer this is not practical, so functions are defined on a **discrete mesh** of grid points labelled i = 1, 2, ..., N

Approximating the derivatives

Derivatives of a function may be approximated from the discrete values (i-1, i, i+1) spaced by h:

1st derivative, 1-sided:
$$f'_i = \frac{f_{i+1} - f_i}{h} + O(h)$$
 $f'_i = \frac{f_i - f_{i-1}}{h} + O(h)$

$$f_i' = \frac{f_i - f_{i-1}}{h} + O(h)$$

1st derivative, central:
$$f'_i = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2)$$

2nd derivative, central:
$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} + O(h^2)$$

This notation indicates how the error in the approximation scales with the size of the mesh

Try Q1 on the tutorial sheet (approximating the derivatives from a discrete function).

1. The value of the function f(x) is known in the following three points

$$f(1) = 1$$
, $f(1.2) = 1.2$, $f(1.4) = 1.15$

- (a) Using central differences, determine the approximate value of f'(1.2) and f"(1.2).
- (b) Using forward differences, determine the first-order approximation for f'(1).
- (c) Using backward differences, determine the first-order approximation for f'(1.4).

Forward:
$$f'_{i} = \frac{f_{i+1} - f_{i}}{h}$$
 Central: $f'_{i} = \frac{f_{i+1} - f_{i-1}}{2h}$

Backward:
$$f'_i = \frac{f_i - f_{i-1}}{h}$$
 Central: $f''_i = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2}$

Try Q4 on the tutorial sheet (central differences with boundary values).

- 4. It is known that f"(x) = 1 for all x ∈ [0, 1]. Additionally, we set f(0) = 1 and f(1) = 0.
 - (a) Use central differences to determine the approximate value of f(0.5).
 - (b) Use uniform mesh to discretize the interval [0, 1] with 3 discretization intervals. Use central difference to determine f(1/3) and f(2/3).
 - (c) This is an example of the so-called boundary value problem. Integrate the equation f"(x) = 1 twice and determine the unknown constants using f(0) = 1 and f(1) = 0. Compare the exact solution with your approximations from parts (a) and (b).

Central difference approximation: $f_i^{"} = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2}$

Try Q3 on the tutorial sheet (if time).

 3. Let f(x) = x³. Determine the error of the forward difference approximation to f'(x₀) = f(x₀+h)-f(x₀)/h evalutated at some arbitrary x_0 . Discuss the dependence of the error on x_0 and h. Now derive the error term for the central difference approximation to $f'(x_0)$ and compare the results.

For forward difference: compare $\frac{(x_0+h)^3-x_0^3}{h}$ with $\frac{d}{dx}(x^3)$

$$\frac{(x_0+h)^3-x_0^3}{h}$$
 with $\frac{d}{dx}(x^3)$

In-class test coming up on Thursday!

Test is on Week 1-4 content (matrices and eigenvalues):

- Find determinant, trace, eigenvalues, eigenvectors of a matrix
- Express determinant/trace in terms of eigenvalues
- Normalise eigenvectors and test for orthogonality
- Write down modal matrix and create diagonal matrix
- Express a quadratic curve as a matrix, classify the curve using its eigenvalues, and identify its principal axes
- Solve a coupled differential equation using matrix methods, given some initial values
- Express a higher-order differential equation in matrix form

That's all for today!