Module 1: Matrices & Eigenvalues

Week 2 Tutorial

Eigenvalues and eigenvectors

Key goals for the class

- 1. What is the meaning of the eigenvectors and eigenvalues of a matrix?
- 2. How do we **determine** eigenvectors and eigenvalues?
- 3. What are the relations between eigenvalues and the **determinant** and **trace** of a matrix?
- 4. How many eigenvectors does a matrix have?

Matrices are linear transformations!

Matrices can be thought of as linear transformations which rotate and stretch a vector:

$$\vec{w} = \mathbf{A} \, \vec{v} \quad \rightarrow \quad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What are eigen-things?

An eigenvector of a matrix is the special direction where the linear transformation corresponds to only a stretching

The eigenvectors and eigenvalues geometrically represent the properties of the linear transformation

How do we find the eigen-things?

How do we find the eigenvectors and eigenvalues of a matrix, that satisfy

$$\mathbf{A} \vec{v} = \lambda \vec{v}$$

How do we find the eigen-things?

How do we find the eigenvectors and eigenvalues of a matrix, that satisfy $\mathbf{A} \ \vec{v} = \lambda \ \vec{v}$?

Re-write as ...

$$\mathbf{A} \ \vec{v} = \lambda \mathbf{I} \ \vec{v} \quad \rightarrow \quad (\mathbf{A} - \lambda \mathbf{I}) \ \vec{v} = 0$$

The only way this can be true is if $|\mathbf{A} - \lambda \mathbf{I}| = 0$

(otherwise, we could find a matrix inverse and would just have $\vec{v}=0$)

Example: what are the eigenvalues of
$$A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$$
?

We need to solve the equation
$$\begin{vmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{vmatrix} = 0$$

How do we find the eigen-things?

How do we find the eigenvectors and eigenvalues of a matrix, that satisfy $\mathbf{A} \ \vec{v} = \lambda \ \vec{v}$?

The general process is:

- 1. Find the **eigenvalues** by solving $|\mathbf{A} \lambda \mathbf{I}| = 0$ (where \mathbf{I} is the identity matrix)
- 2. For each eigenvalue λ , find the corresponding eigenvector by substituting in $\mathbf{A} \vec{v} = \lambda \vec{v}$ and using one of the rows (the other row will give the same answer)
- 3. If needed, normalize the eigenvector such that $\vec{v} \cdot \vec{v} = 1$ (or else can leave in terms of a scalar variable)

Try Q1 on the tutorial sheet (determining eigenvalues and eigenvectors of a 2x2 matrix).

1. Find the eigenvalues and the corresponding eigenvectors of the matrix

$$\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$$

Confirm that the eigenvectors are linearly independent.

Properties of eigenvalues

The eigenvalues of a matrix **A** have two useful properties:

1. The **product** of the eigenvalues equals the determinant of **A**

$$\lambda_1 \lambda_2 \cdots \lambda_n = |\mathbf{A}|$$

2. The sum of the eigenvalues equals the trace of A

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \text{Tr}(\mathbf{A})$$

These properties can be used to determine eigenvalues more easily, if some are already known

Try Q2 on the tutorial sheet (properties of eigenvalues).

2. One of the eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 4 & -1 \\ -1 & 2 & 0 \end{bmatrix}$$

is $\lambda = 2$.

(a) Use the properties of the eigenvalues to find all other eigenvalues of A

$$\lambda_1 + \lambda_2 + \lambda_3 = Tr(A) = a_{11} + a_{22} + a_{33}, \quad det(A) = \lambda_1 \lambda_2 \lambda_3.$$

(b) Find the corresponding eigenvectors.

Do all 2×2 matrices have 2 eigenvectors?

If not, how many eigenvectors can they have?

How can we tell?

Do all 2×2 matrices have 2 eigenvectors?

Example 1: Consider a linear transformation $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ which corresponds to a rotation by 90° at all positions

There are clearly **no** vectors which would only be stretched by this transformation, so there are no eigenvectors

Applying
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
 gives $\lambda^2 = -1$ so $\lambda = \pm i$ no real number solutions!

Do all 2×2 matrices have 2 eigenvectors?

Example 2: Consider a shear $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, which tilts the y-axis but leaves the x-axis unchanged:

The only vector which is not rotated lies along the x-axis, so there is only 1 eigenvector

Applying $|\mathbf{A} - \lambda \mathbf{I}| = 0$ gives $(1 - \lambda)^2 = 0$ so $\lambda = 1$ is the only solution

Do all 2×2 matrices have 2 eigenvectors?

Example 3: Consider a matrix $\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, which multiplies every vector by 2!

Every vector is an eigenvector with eigenvalue 2 – there are an **infinite number of eigenvectors** in this case!

Applying
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
 gives $(2 - \lambda)^2 = 0$ so $\lambda = 2$ is the only solution

Try Q3 and Q4 on the tutorial sheet (properties of eigenvectors).

3. The eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & -1 \\ 2 & 2 & -1 \end{bmatrix}$$

are $\lambda = 1, 1, 0$. Find the corresponding eigenvectors. Is it possible to find any three linearly independent eigenvectors?

4. Given that λ = 1 is a two-times repeated eigenvalue of the matrix

$$\begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{bmatrix}$$

find the corresponding eigenvector.

Note: if eigenvalues are repeated, n linearly independent eigenvectors cannot always be found

Try Q5 on the tutorial sheet (if time).

- 5. Prove the following statements.
 - (a) If \(\vec{v}\) is an eigenvector of A with the eigenvalue \(\lambda\), then \(\vec{v}\) is also an eigenvector of A⁻¹ with the eigenvalue 1/\(\lambda\).
 - (b) The spectrum of A is identical to the spectrum of A^T.
 - (c) If one of the eigenvalues of A is λ = 0, then A is not invertible.
 - (d) For a 2 × 2 matrix A, the eigenvalues are given by

$$\lambda = \frac{\operatorname{Tr}(A)}{2} \pm \frac{\sqrt{\operatorname{Tr}(A)^2 - 4\det(A)}}{2}.$$

That's all for today!