Module 3: Probability and Statistics Week 12 Tutorial # Hypothesis tests #### Key goals for the class - 1. How do we apply a hypothesis test for the population mean, given a data sample? - 2. How do we check whether binned data is correlated, using a χ^2 hypothesis test? - 3. How do we check whether strings of data values are correlated, using a correlation coefficient hypothesis test? ### Hypothesis tests # Hypothesis testing is a common feature of "frequentist statistics" - 1. State **null hypothesis** (H_0) and alternate hypothesis (H_1) - 2. Determine the test statistic - 3. Specify its **critical value** for the chosen significance level - 4. State the **rejection rule** for H_0 - 5. Calculate the **observed value** of the test statistic - 6. Draw the conclusion ### Hypothesis test for the mean Sample mean and size Population standard deviation is known "If the mean of a sample of N=16 is 3.42, and the population standard deviation is 0.68- test, at significance level 5%, whether population mean < 3.70" Significance level Range of population mean - 1. **Null hypothesis** H_0 is $\mu = 3.70$, H_1 is $\mu < 3.70$ - 2. Test statistic is **z-score**, since the standard deviation is known - 3. Critical value is $z_c = -1.645$ for 5% significance \rightarrow rejection rule for H_0 is z < -1.645 - 4. Observed value is $z = \frac{\bar{x} \mu}{\sigma / \sqrt{N}} \rightarrow$ carry out hypothesis test ### Reading the normal distribution table #### Normal Distribution The table gives probability $P = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$. For x < 0 values of $\Phi(x)$ can be obtained from $\Phi(-x) = 1 - \Phi(x)$. | x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.6626 0.6604 0.6103 0.6114 0.6257 0.6251 0.628 0.6684 0.6381 0.6626 0.6604 0.6406 0.6443 0.6480 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6883 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7334 0.7357 0.7389 0.7422 0.7444 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 0.7744 | | | | | | | | | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6044 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.74486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7744 0.7764 0.7794 0.7823 0.7850 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 <th>х</th> <th>0</th> <th>0.01</th> <th>0.02</th> <th>0.03</th> <th>0.04</th> <th>0.05</th> <th>0.06</th> <th>0.07</th> <th>0.08</th> <th>0.09</th> | х | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6044 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7744 0.7764 0.7794 0.7754 0.7580 0.611 0.7662 0.7673 0.7704 0.7734 0.7764 0.7794 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 | 0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 | | 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.8551 0.8807 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8570 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 | 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 | | 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7794 0.7794 0.7794 0.7794 0.7764 0.7794 0.7794 0.7784 0.808 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8360 0.8836 0.8831 1 0.8413 0.8485 0.8686 0.8588 0.8579 0.8749 0.8770 0.8799 0.8810 0.8831 1.2 0.8849 0.8880 0.8880 0.8925 0.8944 | 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 | | 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1 0.8443 0.8665 0.8686 0.8708 0.8529 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9917 1.4 0.9192 0.9207 | 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 | | 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1 0.8413 0.8465 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9322 0.9306 0.9319 1.5 0.9332 0.9463 | 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 | | 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9142 0.9177 1.4 0.9192 0.9345 0.9357 | 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 | | 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9036 1.3 0.9932 0.9049 0.9066 0.9082 0.9999 0.9115 0.9131 0.9147 0.9132 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.932 0.9306 0.9319 1.5 0.9332 0.9463 < | 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 | | 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9032 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9322 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9322 0.9306 0.9319 1.5 0.9332 0.9463 0.9474 0.9484 0.9495 0.9555 0.9515 0.9525 0.9535 0.9545 1.7 0.9544 0.9564 | 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 | | 1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9032 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9132 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9232 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9252 0.9555 0.9515 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9546 0.9573 | 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 | | 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9032 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9132 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9232 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9222 0.9505 0.9515 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9564 0.9573 0.9582 0.9593 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9566 0.9732 | 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 | | 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9036 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9132 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9232 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9222 8.9991 0.466 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9531 9.9569 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9772 0.9778 0.9783 | 1 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 | | 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9182 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9262 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9252 8.9991 0.466 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9531 0.9508 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9772 0.9778 0.9783 0.9783 0.9744 0.9750 0.9756 0.9761 0.9767 2.1 0.9821 0.9783 0.9783 0.9793 | 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 | | 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9322 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9292 0.9944 0.4366 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9535 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2 0.9772 0.9778 0.9783 0.9783 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 | 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 | | 1.5 0.9332 0.9345 0.9357 0.9370 0.9323 0.9394 0.436 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9531 0.9539 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9766 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2 0.9772 0.9778 0.9783 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 < | 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | | | 0.9177 | | 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9767 2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9857 2.2 0.9861 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9992 0.9925 0.9927 0.9929 0.9931 | 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | | 0.9279 | 0.0052 | 0.9306 | 0.9319 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.0385 | 0.0304 | 0/200 | 0.9418 | 0.9429 | 0.9441 | | 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9934 0.9936 2.4 0.9918 0.9920 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9941 | 1.6 | 0.9452 | | 0.9474 | 0.9484 | 0.9495 | 0.9505 | .9515 | 0.9525 | 0.9535 | 0.9545 | | 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9884 0.9884 0.9887 0.9890 2.3 0.9893 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9914 0.9936 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 | 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9051 | 0.0000 | 0.9608 | 0.9616 | 0.9625 | 0.9633 | | 2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9974 2.7 0.9965 0.9966 0.9967 | 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | | | 0.9686 | 0.9693 | 0.9699 | 0.9706 | | 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9976 0.9968 0.9969 0.9970 0.9971 0.9972 0.9981 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 0.9985 0.9986 0.9986 | | | | | 0.9732 | | | 0.9750 | 0.9756 | 0.9761 | | | 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9981 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9986 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | 2 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 | | 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9981 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0.9986 | | | | | | | | | 0.9850 | 0.9854 | | | 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9966 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | | 0.9861 | 0.9864 | 0.9868 | | | | 0.9881 | 0.9884 | | 0.9890 | | 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | | | | | | | | | | | | | 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | | | | | | | | | | | | | 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | | | | | | | | | | | | | 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | | | | | | | | | | | | | 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 | | | | | | | | | | | | | | | | | | | | | | | | | | 3 0.9987 0.9987 0.9987 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 | | | | | | | | | | | | | | 3 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 | The z-score maps to the x value in the normal distribution table If P = 0.95 (5% probability in the tail), then z = 1.645 Try Q1 on the tutorial sheet (testing a hypothesis for the mean, knowing the population standard deviation). - The mean weight loss of 16 grinding balls after a certain length of time in mill slurry is 3.42 g Assume that the weight loss of individual grinding balls is normally distributed and that the population standard deviation is 0.68 g. - (a) Test, at 5% significance level, whether the population mean weight loss is less than 3.70 g. - (b) You are looking to prove that the population mean weight loss is different from 3 g. Determine the p-value, in this case. ### Hypothesis test for the mean If the population standard deviation is **not known**, and must be estimated from the sample, the steps change. Question: Given a data sample of size N, test at 2.5% significance whether the population mean $\mu > 23$ - 1. Compute the sample mean $ar{x}$ and standard deviation s - 2. Null hypothesis H_0 is $\mu = 23$, H_1 is $\mu > 23$ - 3. Test statistic is t-score, since the standard deviation is unknown - 4. Critical value is $t_c = 2.365$ (using d.f. = N 1 and p = 0.025) - 5. Observed value is $t = \frac{\bar{x} \mu}{s / \sqrt{N}}$ \rightarrow carry out hypothesis test ### Reading the *t*-distribution table #### 1-tailed probability | | Upper tail probability p | | | | | | | | | | | | |----------|--------------------------|--------|-------|-------|-------|----------------|-------|---------|----------------|-------|-------|------| | df | .25 | .20 | .15 | .10 | .05 | .025 | .02 | .01 | .005 | .0025 | .001 | .000 | | 1 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3 | 636 | | 2 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33 | 31.6 | | 3 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21 | 12.9 | | 4 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.61 | | 5 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.893 | 6.86 | | 6 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.117 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.95 | | 7 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2,365 | 2 517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.40 | | 8 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.300 | 2.449 | 7 8 9 6 | 3.355 | 3.833 | 4.501 | 5.04 | | 9 | 0.703 | 0.88.3 | 1.100 | 1.383 | 1.833 | 2.262 | 2.398 | 2.8.21 | 1.250 | 3.690 | 4.297 | 4.78 | | 10 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.359 | 2.764 | 3.109 | 3 581 | 4.144 | 4.58 | | 11 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.43 | | 12 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.31 | | 1.3 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2,160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.22 | | 14 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.14 | | 15 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.07 | | 16 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.01 | | 17 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.96 | | 18 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.214 | 2.552 | 2.878 | 3.197 | 3.611 | 3.92 | | 19 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.88 | | 20 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3,85 | | 21 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.81 | | 22 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.79 | | 23 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.76 | | 24 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.74 | | 25 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.72 | | 26 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.70 | | 27 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3,69 | | 28
29 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048
2.045 | 2.154 | 2.467 | 2.763
2.756 | 3.047 | 3.408 | 3.67 | | 30 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.043 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.64 | | 40 | 0.681 | 0.854 | 1.050 | 1.303 | 1.684 | 2.042 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.55 | | 50 | 0.679 | 0.849 | 1.047 | 1.299 | 1.676 | 2.009 | 2.109 | 2.403 | 2.678 | 2.937 | 3.261 | 3,49 | | 60 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.009 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3,46 | | 80 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.41 | | 100 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.39 | | 000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098 | 3.30 | | ξ* | 0.674 | 0.841 | 1.036 | 1.282 | 1.645 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.091 | 3.29 | | | 50% | 60% | 70% | 80% | 90% | 95% | 96% | 98% | 99% | 99.5% | 99.8% | 99.9 | Degrees of freedom (= N-1 for hypothesis test of mean) Example: for 2.5% significance test for a sample N=8, critical value is $t_c=2.365$ Try Q2 on the tutorial sheet (testing a hypothesis for the mean, not knowing the population std.dev.). 2. School of Australian salmon is spotted off Gunnammata beach. Fishermen catch and measure the length of 8 fish in cm Assuming that the length of the fish is normally distributed, test at $\alpha = 2.5\%$ significance that the mean length of Australian salmon in the school is larger than 23 cm. ### Correlation testing We now wish to check whether two random variables are correlated (vary together) or independent. We'll discuss: - 1. χ^2 ("chi-squared") hypothesis test on contingency table - 2. Correlation coefficient hypothesis test using values ## χ^2 test for independence The first correlation test uses a 2D data table such as: | Table 1 | L: W | eeken | d sa | les. | |---------|------|-------|------|------| |---------|------|-------|------|------| | Type of shop | Saturday | Sunday | |--------------|----------|--------| | Shop 1 | 100 | 30 1 | | Shop 2 | 12 | 10 | | Shop 3 | 34 | 15 | | Shop 4 | 7 | 10 | | | 153 | 65 2 | #### Is there a relation between the day and the shop activity? - 1. Write the row and column totals ("marginal distributions") - 2. Use these to create the expected frequencies in each cell assuming the variables are independent, $E = \frac{\text{row total} \times \text{column total}}{\text{grand total}}$ - 3. Determine $\chi^2 = \sum \frac{(O-E)^2}{E}$ where O = observed, E = expected - 4. Compare χ^2 to **test threshold**, using $d.f. = (N_{\text{row}} 1) \times (N_{\text{col}} 1)$ ## Reading the χ^2 table #### Probability in the tail | abl | e C | | | | χ^2 critical values | | | | | | | | |-----|-------|-------|-------|-------|--------------------------|-----------|-------|----------------|----------------|----------------|-------|--| | | | | | | Tail p | robabilit | y p | | | | | | | df | .25 | .20 | .15 | .10 | .05 | .025 | .02 | .01 | .005 | .0025 | .001 | | | 1 | 1.32 | 1.64 | 2.07 | 2.71 | 3.84 | 5.02 | 5.41 | 6.63 | 7.88 | 9.14 | 10.83 | | | 2 | 2.77 | 3.22 | 3.79 | 4.61 | 5.99 | 7.38 | 7.82 | 9.21 | 10.60 | 11.98 | 13.82 | | | 3 | 4.11 | 4.64 | 5.32 | 6.25 | 7.81 | 9.35 | 9.84 | 11.34 | 12.84 | 14.32 | 16.27 | | | 4 | 5.39 | 5.99 | 6.74 | 7.78 | 9.49 | 11.14 | 11.07 | 13.28 | 14.86 | 16.42 | 18.47 | | | 5 | 6.63 | 7.29 | 8.12 | 9.24 | 11.07 | 12.83 | 13.39 | 15.09 | 16.75 | 18.39 | 20.51 | | | 6 | 7.84 | 8.56 | 9.45 | 10.64 | 12.59 | 14.45 | 15.03 | 16.81 | 18 55 | 20.25 | 22.46 | | | 7 | 9.04 | 9.80 | 10.75 | 12.02 | 14.07 | 16.01 | 16.62 | 18.48 | 20.28 | 22.04
23.77 | 24.32 | | | 8 | 10.22 | 11.03 | 12.03 | 13.36 | 15.51 | 17.53 | 18.17 | 20.09 | 21.95 | 23,77 | 26.12 | | | 9 | 11.39 | 12.24 | 13.29 | 14.68 | 16.92 | 19.02 | 19.68 | 21.67 | 23.59 | 25.46 | 27.88 | | | 10 | 12.55 | 13.44 | 14.53 | 15.99 | 18.31 | 20.48 | 21.16 | 23.21 | 25.19 | 27.11 | 29.50 | | | 11 | 13.70 | 14.63 | 15.77 | 17.28 | 19.68 | 21.92 | 22.62 | 24.72 | 26.76 | 28.73 | 31.26 | | | 12 | 14.85 | 15.81 | 16.99 | 18.55 | 21.03 | 23.34 | 24.05 | 26.22 | 28,30 | 30.32 | 32.91 | | | 13 | 15.98 | 16.98 | 18.20 | 19.81 | 22.36 | 24.74 | 25.47 | 26.22
27.69 | 29.82
31.32 | 31.88 | 34.53 | | | 14 | 17.12 | 18.15 | 19.41 | 21.06 | 23.68 | 26.12 | 26.87 | 29.14 | 31.32 | 33.43 | 36.12 | | | 15 | 18.25 | 19.31 | 20.60 | 22.31 | 25.00 | 27.49 | 28.26 | 30.58 | 32.80 | 34.95 | 37.70 | | | 16 | 19.37 | 20.47 | 21.79 | 23.54 | 26.30 | 28.85 | 29.63 | 32.00 | 34.27 | 36.46 | 39.25 | | | 17 | 20.49 | 21.61 | 22.98 | 24.77 | 27.59 | 30.19 | 31.00 | 33.41 | 35.72 | 37.95 | 40.79 | | | 18 | 21.60 | 22.76 | 24.16 | 25.99 | 28.87 | 31.53 | 32.35 | 34.81 | 37.16 | 39.42 | 42.31 | | | 19 | 22.72 | 23.90 | 25.33 | 27.20 | 30.14 | 32.85 | 33.69 | 36.19 | 38.58 | 40.88 | 43.82 | | | 20 | 23.83 | 25.04 | 26.50 | 28.41 | 31.41 | 34.17 | 35.02 | 37.57 | 40.00 | 42.34 | 45.31 | | | 21 | 24.93 | 26.17 | 27.66 | 29.62 | 32.67 | 35.48 | 36.34 | 38.93 | 41.40 | 43.78 | 46.80 | | | 22 | 26.04 | 27.30 | 28.82 | 30.81 | 33.92 | 36.78 | 37.66 | 40.29 | 42.80 | 45.20 | 48.27 | | | 23 | 27.14 | 28.43 | 29.98 | 32.01 | 35.17 | 38.08 | 38.97 | 41.64 | 44.18 | 46.62 | 49.73 | | | 24 | 28.24 | 29.55 | 31.13 | 33.20 | 36.42 | 39.36 | 40.27 | 42.98 | 45.56 | 48.03 | 51.18 | | | 25 | 29.34 | 30.68 | 32.28 | 34.38 | 37.65 | 40.65 | 41.57 | 44.31 | 46.93 | 49.44 | 52.62 | | | 26 | 30.43 | 31.79 | 33.43 | 35.56 | 38.89 | 41.92 | 42.86 | 45.64 | 48.29 | 50.83 | 54.05 | | | 27 | 31.53 | 32.91 | 34.57 | 36.74 | 40.11 | 43.19 | 44.14 | 46.96 | 49.64 | 52.22 | 55.48 | | | 28 | 32.62 | 34.03 | 35.71 | 37.92 | 41.34 | 44.46 | 45.42 | 48.28 | 50.99 | 53.59 | 56.89 | | | 29 | 33.71 | 35.14 | 36.85 | 39.09 | 42.56 | 45.72 | 46.69 | 49.59 | 52.34 | 54.97 | 58.30 | | | 30 | 34.80 | 36.25 | 37.99 | 40.26 | 43.77 | 46.98 | 47.96 | 50.89 | 53.67 | 56.33 | 59.70 | | | 40 | 45.62 | 47.27 | 49.24 | 51.81 | 55.76 | 59.34 | 60.44 | 63.69 | 66.77 | 69.70 | 73.40 | | | 50 | 56.33 | 58.16 | 60.35 | 63.17 | 67.50 | 71.42 | 72.61 | 76.15 | 79.49 | 82.66 | 86.66 | | | 60 | 66.98 | 68.97 | 71.34 | 74.40 | 79.08 | 83,30 | 84.58 | 88.38 | 91.95 | 95.34 | 99.61 | | | 80 | 88.13 | 90.41 | 93.11 | 96.58 | 101.9 | 106.6 | 108.1 | 112.3 | 116.3 | 120.1 | 124.8 | | | 100 | 109.1 | 111.7 | 114.7 | 118.5 | 124.3 | 129.6 | 131.1 | 135.8 | 140.2 | 144.3 | 149.4 | | Degrees of freedom (= $(N_{row} - 1) \times (N_{col} - 1)$ for independence test) Example: for 98% confidence if d. f. = 3, we need $\chi^2 > 9.84$ If $\chi^2 > 9.84$, then the null hypothesis of independent variables is rejected Try Q3 on the tutorial sheet (χ^2 test for the independence of variables). 3. Four different internet shops counted the number of sales on a given weekend (Saturday and Sunday). Is the type of the shop independent of the day? Table 1: Weekend sales. | Type of shop | Saturday | Sunday | |--------------|----------|--------| | Shop 1 | 100 | 30 | | Shop 2 | 12 | 10 | | Shop 3 | 34 | 15 | | Shop 4 | 7 | 10 | - (c) Conduct the χ² test of independence and conclude at 2% significance. - (d) Conduct the χ^2 test of independence and conclude at 0.5% significance. ### Testing for a linear relationship The second correlation test searches for a linear relationship between strings of data such as: $$x = \{ 2.1, 2.1, 2.1, 2.2, 2.3, 2.4, 2.4, 2.4, 2.4, 2.5, 2.5 \}$$ $y = \{ 43, 44, 45, 49, 55, 58, 56, 51, 52, 62 \}$ Is there a linear relation between x and y? - 1. Find the Pearson coefficient $r = \frac{\sum (x_i \bar{x})(y_i \bar{y})}{(N-1) s_x s_y}$ (you can use the green calculator to do this if you wish) - 2. Compute the test statistic $t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$ - 3. Compare t to **test threshold**, using $d \cdot f \cdot = N 2$ Try Q4 on the tutorial sheet (testing for a linear relationship between two variables). 4. Consider two sets of data. **Data source:** Ember (2025); Energy Institute - Statistical Review of World Energy (2025). Nuclear power production (world, thousands of TWh, 1991-2005): {2.1, 2.1, 2.1, 2.2, 2.3, 2.4, 2.4, 2.4, 2.5, 2.5}. Number of Australian student visas issues (thousands) to commence in 2005-2014 (Project 2025, S2): {43, 44, 45, 49, 55, 58, 56, 51, 52, 62}. Is there a linear relation between these two variables? Give as many details as possible. # That's all for today!