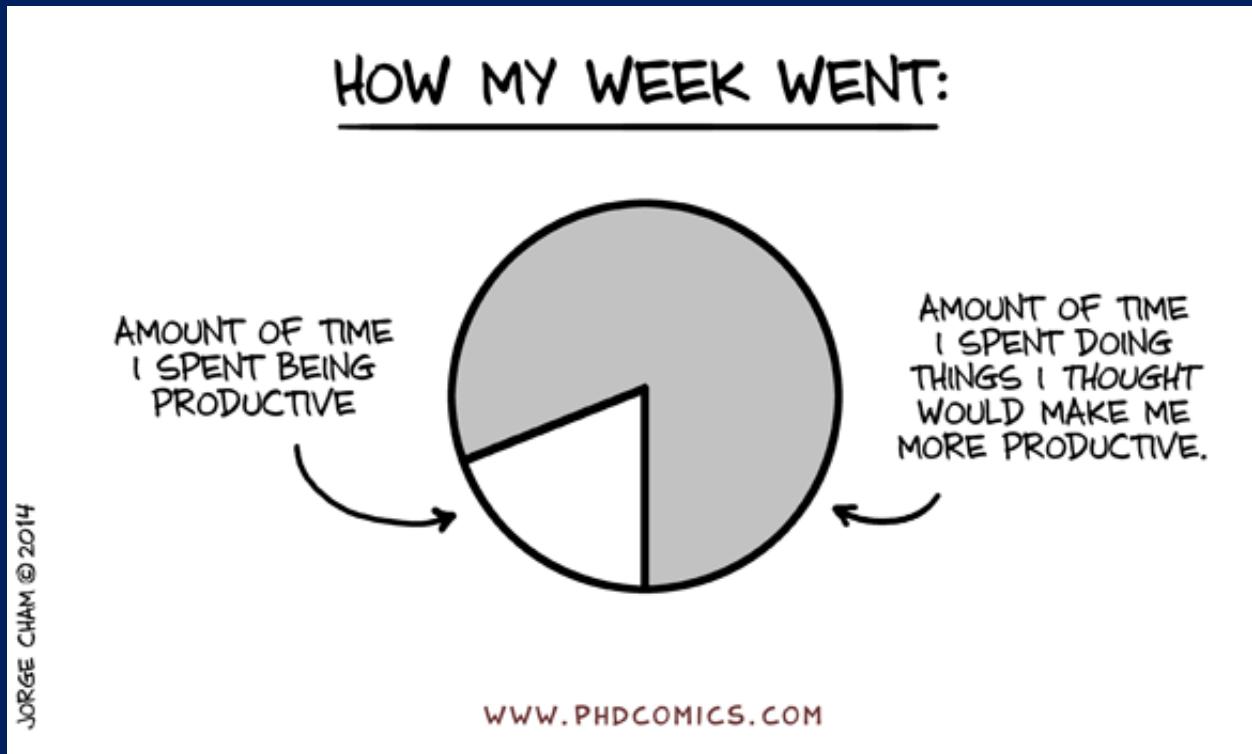


Welcome to the
Research Skills course!

Introduction to the module


- The Research Skills course aims to provide **practical tips and strategies for becoming a researcher!**
- Represents **20% of the credit** for NPS40012
- Weekly classes **Mondays 10.30-11.30 in AMDC912**
- **No assignments** but full credit awarded for:
 - Attendance of research skills classes (at least 9 out of 12)
 - Submission of project bibliography
 - Submission of report skeleton
 - Submission of presentation skeleton

Honours Astrophysics & Physics Research Skills course

Week	Date	Topic	Facilitator(s)	Deliverable
1	3 Mar	Project planning	Chris Blake, Greg Poole	
2	10 Mar	How to find and use references	Chris Blake, Wesley van Kempen	
3	17 Mar	How to read a science paper	Chris Blake, James Chon	Bibliography
4	24 Mar	How to start writing	Michelle Cluver	
5	31 Mar	Good habits for writing	Michelle Cluver	
6	7 Apr	How to use AI tools	Darren Croton	Report skeleton
7	14 Apr	How to make a scientific figure	Ryan Shannon	
8	28 Apr	How to determine the errors in your measurements	Chris Blake	
9	5 May	Good coding practice	Rory Elliott, Lydia Haacke, Tyson Dial	
10	12 May	How to manage your data	Adam Deller	
11	19 May	How to communicate science	Sara Webb	
12	26 May	How to plan a research presentation	Ryan Turner	Presentation skeleton

Research Skills Class 1:

Project planning

What is “project planning”?

- Having a **structured approach** to planning and handling tasks, using simple tools and habits, so you can deliver what's needed and make your life easier!

Project planning “survival guide”!

What do you need ...??

- Split project into chunks/milestones
- Priorities for each
- Project timeline
- Method for recording progress

*If your project has “risks” involved, e.g., if you need to access to lasers or other equipment which is not guaranteed, you should probably also think about “contingency planning”

Breaking it down

Many of us approach projects like this 😊

A better approach is to break down your big goal into smaller chunks

- Makes the goal feel more manageable
- Helps track your progress and avoid last-minute scrambles
- Easier to get feedback on each part (helps your supervisor help you)

You'll need to know when each chunk is finished – using “milestones”

Let's see an example ...

Project goal: “*Measure the growth rate of cosmic structure using galaxy motions*”

??

Review the literature
which explains why my
work is interesting

Download galaxy dataset
and understand the
meaning of the columns

Breaking it
down into
chunks:

Create a computer code
to measure correlation
function of the dataset

Research the theoretical
equations to compare
with the measurement

Create a computer code
to evaluate equations
and fit the growth rate

Write your thesis!

Let's see an example ...

Project goal: “*Measure the growth rate of cosmic structure using galaxy motions*”

??

Milestones
for each
chunk:

I have listed the key contributions of my work to the field

I can plot different columns of the data and the results make sense

I have successfully validated the code using a test dataset

I have written the equations in a document

I have fit for the parameter and validated the result

Thesis is submitted ☺

Let's see an example ...

Project goal: “*Measure the growth rate of cosmic structure using galaxy motions*”

??

Priorities
for each
chunk:

Review the literature which explains why my work is interesting

4

Download galaxy data and understand the meaning of the columns

2

Create a computer to measure correlation function of the dataset

3

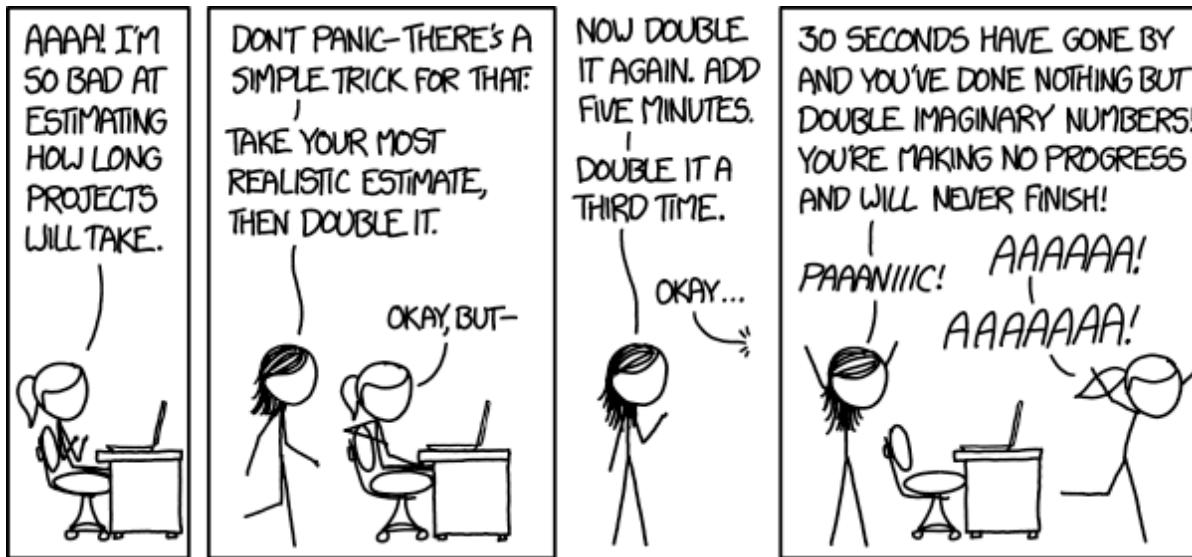
Research the theoretical equations to compare with the measurement

5

Create a computer to evaluate equations and fit the growth rate

6

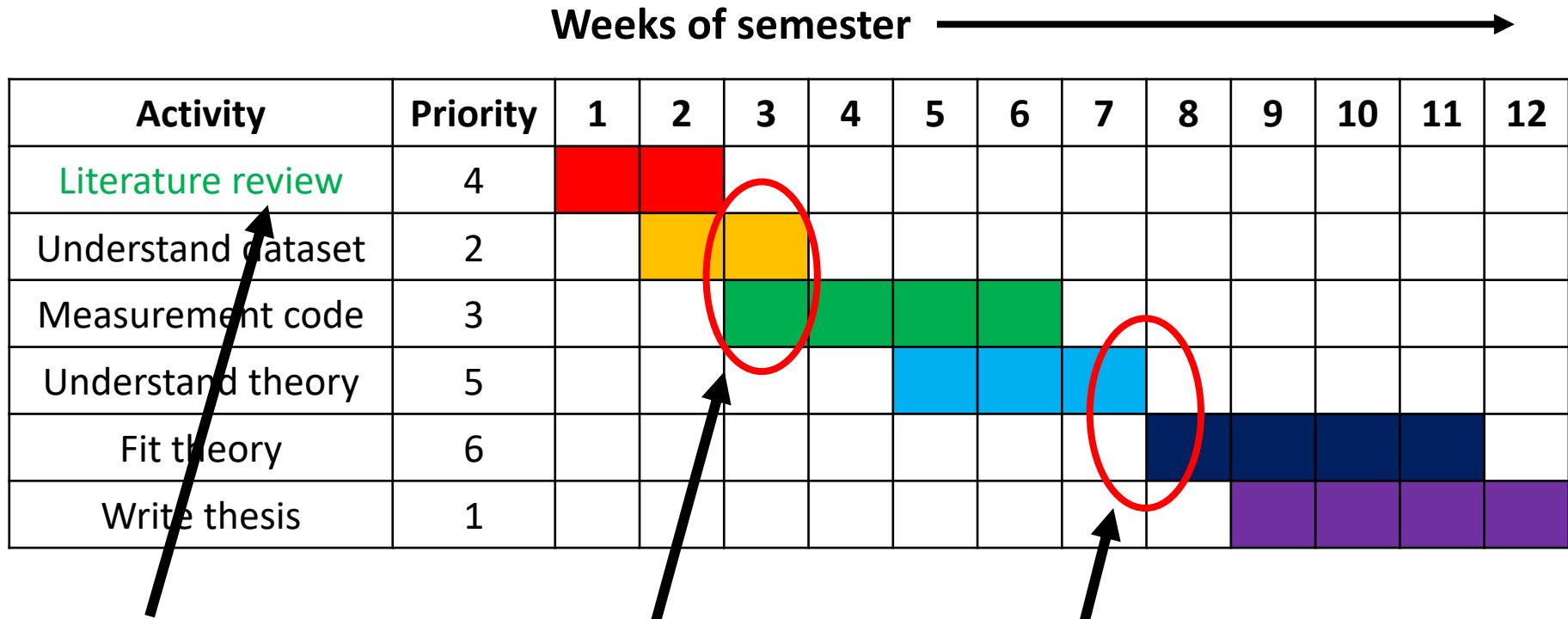
Write your thesis!


1

The power of “no” !

- **Prioritisation** can be very helpful in judging when to include or exclude a potential new research task
- If you add an extra task, it means not doing something else – **how do the priorities compare?**

The dreaded timeline


- Now we've identified the parts of our project, we need to plan **how much time** to spend on each
- Common time underestimates are **coding** and **writing**
- **Simple visualization of a timeline** is often effective
(This is sometimes called a “Gantt chart” ☺)

The dreaded timeline

Here is a simple example based on the above project:

The dreaded timeline

Here is a simple example based on the above project:

What happens when it goes wrong?

- Research and life are unpredictable, and timelines often don't work out – **this is normal!**
- You'll need to **regularly re-visit and refine your goals and timelines** ☺
- It's better to do this in a planned way as the semester unfolds, rather than under pressure at the end!
- Easy to do this using the **priorities** you recorded
- It's best to **protect your writing time** as much as possible – usually better to change the project aims

What happens when it goes ~~wrong~~ normally?

Old goal: “Measure the growth rate of cosmic structure using galaxy motions”

Activity	Priority	1	2	3	4	5	6	7	8	9	10	11	12
Literature review	4												
Understand dataset	2												
Measurement code	3												
Understand theory	5												
Fit theory	6												
Write thesis	1												

*Ooops, this high-priority task took 7 weeks rather than 4 weeks.
Installing python a nightmare. Data is corrupted. Computer is
broken. First attempt at algorithm would take 100 years to run.*

What happens when it goes ~~wrong~~ normally?

New goal: “*Measure the ~~growth rate of cosmic structure~~ correlations between galaxy motions*”

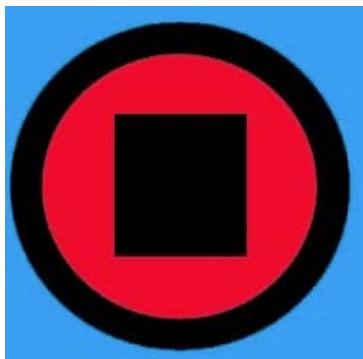
Activity	Priority	1	2	3	4	5	6	7	8	9	10	11	12
Literature review	4												
Understand dataset	2												
Measurement code	3												
Understand theory	5												
Fit theory	6												
Write thesis	1												

This activity can be removed because it's the lowest priority

This activity is unchanged because it's the highest priority

Document and communicate!

- Maintain a **log-book** (paper or digital!) where you track your progress, decisions and intermediate results
- Meet at least **once a week** with your supervisor
- **Write up as you go!** (whilst fresh in your mind)


Staying focused and motivated

- The typical state of research is for something not to be working ☺. **How can you stay motivated?**
- Break tasks into smaller chunks which are more manageable. *Enjoy the “small wins”!*
- Work for a focused period and then take a break or enjoy a reward (e.g. search for “Pomodoro technique”)
- Identify the style of research activity you find most enjoyable or rewarding
- Enjoy the community with your fellow students and research group. *Everyone feels the same way!*

What do you think?

Is there any planning approach you might try **starting**?

Is there any work habit you might try **stopping**?

Are you already using a planning approach which you'll **continue**?

Activities to try

- Create a list of chunks, milestones and priorities for your project
- Arrange these pieces onto a visual timeline
- If your project has any “risky” parts (e.g. access to specialized equipment), write down some potential alternatives

That's all for today!

Example for an experimental project

Project goal: “*Synthesise spherical crystalline silicon nanoparticles of size 100 – 200 nm*”

??

Review the literature
which explains why my
work is interesting

Learn the laser ablation
nanoparticle synthesis
experimental apparatus

Breaking it
down into
chunks:

Create and conduct
experiments to test size
& sphericity of particles

Research theoretical
equations to optically
characterize the particles

Create a computer code
to simulate the
expected results

Write your thesis!

Example for an experimental project

Project goal: “*Synthesise spherical crystalline silicon nanoparticles of size 100 – 200 nm*”

??

I have listed the key contributions of my work to the field

I can operate laser ablation setup to create nanoparticles

Milestones for each chunk:

I have set up apparatus to test the sphericity and size of the particles

I've simulated all the theoretical equations to interpret the results

I have conducted experiments and validated with theory

Thesis is submitted ☺

Example for an experimental project

Project goal: “Synthesise spherical crystalline silicon nanoparticles of size 100 – 200 nm”

?