
Transcript for Video 5: The Hydrogen Atom 
 
[1] Hello everyone, and welcome to our latest quantum mechanics video!  Today we’re 
going to apply the Schrödinger equation to systems in three dimensions, starting with some 
simple cases such as a particle trapped in a box.  We’ll then build up to spherical systems, 
which will allow us to understand the hydrogen atom, one of the most important quantum 
systems.  We’ll look at methods for solving the Schrödinger equation in this case, the radial 
and angular pieces that result, and how to use these to determine the quantum states of 
hydrogen. 
 
[2] When we apply the Schrödinger equation to a particle in three dimensions, our particle 
can now move along all the axes of our co-ordinate system, not just the “x” axis.  In this 
case, the old 1D Schrödinger equation must be generalised.  The double derivative with 
respect to “x” that appears must be extended to include the contributions from the other 
dimensions as well, which are all represented by partial derivatives.  This sum of double 
derivatives is called the Laplacian operator in mathematics.  With this extension, the time-
independent Schrödinger equation in three dimensions assumes the form shown on the 
slide, where the wavefunction and potential now depend on the “x”, “y” and “z” co-
ordinates.  The 3D wavefunction is normalised in the same way as a 1D wavefunction, by 
ensuring the total probability it represents sums to “1”.  To do this we must integrate over 
three dimensions, which requires a multiple integral over the “x”, “y” and “z” directions. 
 
[3] To start with, let’s think about the case of a particle enclosed in a 3D box, which is 
trapped by a potential which is zero inside a cube, and infinity outside these walls.  A 
powerful solution method in cases like this is to search for something called a separable 
solution.  This means that we assume the wavefunction, which in general can depend jointly 
on “x”, “y” and “z” variables, depends on a product of separate functions of just one of the 
variables, which is a much simpler form.  If I substitute this trial solution into the 
Schrödinger equation and re-arrange the result, I’ll end up with the equation shown at the 
bottom of the slide, where I have used the fact that the potential is zero inside the box.  
Please feel free to pause the video and try this substitution if you would like to check it. 
 
[4] Here’s this equation again.  We can solve this equation with a nice piece of logic.  We 
notice that each term in the square brackets only depends on one of the variables “x”, “y” 
or “z”.  The first term depends on “x”, the second term depends on “y” and the third term 
depends on “z”.  But each of these variables “x”, “y” and “z” is free to vary independently of 
the others so as I change each variable, those three terms might individually change their 
value.  However, no matter how they change their value, the sum of these three terms must 
always equal the constant shown on the right-hand side.  The only way I can ensure this 
always works is if each individual term inside the square bracket is separately equal to a 
constant.  And if I put each of those individual terms equal to a constant, I can re-arrange 
each term to find a separate 1D Schrödinger equation.  In other words, my product of 
functions “f”, “g” and “h” will satisfy the 3D Schrödinger equation for the infinite potential 
well, if each of these component functions separately satisfies the 1D Schrödinger equation 
of an infinite potential well.  And the total energy of the particle inside the 3D box will then 
be equal to a sum of the three separate energy eigenvalues of that 1D Schrödinger 



equation.  Please try writing these equations on paper yourself if you would like to see how 
this works. 
 
[5] Since a 1D potential well is characterised by a single quantum number “n”, which labels 
the energy eigenvalue and eigenfunction, then a particle in a 3D potential well will possess 
three quantum numbers, one for each axis.  Each quantum number specifies one of the 
component eigenfunctions in the product, which are separately solutions to the 1D 
potential well.  As we mentioned, the energy eigenvalues are the sum of the corresponding 
eigenvalues of the 1D potential well.  Looking at this equation for the total energy, it’s 
interesting to see that different eigenfunctions can have the same energy.  For example, I 
could set “n_x equals 2”, “n_y equals 1” and “n_z equals 1”, and this eigenfunction would 
have the same energy as the different eigenfunction “n_x equals 1”, “n_y equals 2” and “n_z 
equals 1”, since the sum of the squares of these integers is the same in both cases.  
Different eigenfunctions which have the same energy eigenvalues are known as degenerate 
states.  We’ll be seeing more of these when we discuss the hydrogen atom! 
 
[6] Let’s now consider an important type of potential energy function known as a “central 
potential”.  This type of potential energy only varies with the radial distance “r” of the 
particle from the origin, not with the direction.  An important example is an electron 
orbiting a hydrogen nucleus or proton at the origin, whose electrostatic potential only 
depends on the distance from the origin. 
 
[7] When we have a 3D quantity depending only on radius, the best mathematical co-
ordinates for analysing this problem will be the spherical polar co-ordinates,  These consist 
of the radius “r” as well as the spherical co-ordinates “theta” and “phi” we met in the 
previous video.  To write the Schrödinger equation in this co-ordinate system, we need to 
use the Laplacian operator as a function of “r”, “theta” and “phi” co-ordinates.  You can see 
it here on the slide!  It’s a complicated sum of derivatives, but this is not something you’ll 
need to memorize. 
 
[8] To find the eigenfunctions for a central potential, we’ll use the same technique of a 
separable solution that we employed for the particle in a box.  This time, we’ll look for a 
separable solution which is a product of two terms, where the first term is a function 
depending just on “r”, and the second term depends jointly on “theta” and “phi”.  In the 
next couple of slides I’ll list some details for how to perform this solution – this is not a proof 
we’ll need to derive ourselves, so I’ll just give a summary to explain the argument.  First I’ll 
substitute this separable solution in the 3D Schrödinger equation for “r”, “theta” and “phi” 
co-ordinates, and re-arrange the equation such that the terms depending on angles are on 
the left-hand side, and the terms depending on radius are on the right-hand side.  I’ll 
highlight here that I’ve replaced the symbol “m”, which used to mean the mass of the 
particle, with the Greek letter “mu”.  That’s because I want to use “m” to represent a 
quantum number.  I’ll now apply the same logic to this separable solution as I did when 
solving the 3D box potential – since the different co-ordinates can vary independently of 
each other, the only way this equality can always hold is if the two sides are separately 
equal to a constant, which I’ll write as the Greek letter “lambda” for now. 
 



[9] If I put the left-hand side of the equation equal to this constant, I find this equation for 
the angular piece of the solution.  And we can recognise the left-hand side of this equation 
as exactly the operator for the total angular momentum squared that we met in the 
previous video!  This is very convenient since we have already solved this equation, and we 
know that the eigenfunctions labelled by “Y” are the spherical harmonic functions.  Also, the 
eigenvalues “lambda” are the possible values of total angular momentum, which are “ell” 
times “ell plus 1” times “h-bar squared”, where “ell” is an integer.  So, we have learned that 
the angular piece of the energy eigenfunctions for a central potential is just the angular 
momentum eigenfunctions we have already studied, and we can concentrate on the radial 
piece instead. 
 
[10] Using this same value of “lambda” in the radial equation and re-arranging, we obtain 
the equation we can see at the top of this slide.  Feel free to give these steps a try in your 
own working if you wish.  We can simplify this equation with a useful change of variables, 
where we replace the radial function “capital R” with another function “u” which just scales 
it by the radial co-ordinate.  This is useful because the first term in our radial equation now 
simplifies to a normal second derivative.  We should remember that although this is the 
radial equation, it does also depend on the angular momentum state through the value of 
“l”, which is specifying the total angular momentum of the system.  We can now see that 
our radial equation has exactly the same form as a 1D Schrödinger equation, where the 
usual potential has been replaced by an effective potential including this angular 
momentum term.  So through these steps we have understood that our complicated 3D 
Schrödinger equation in spherical polar co-ordinates is much simpler than it originally 
looked – it can be solved using a product of the angular momentum eigenfunctions we have 
already developed, and a radial function which is a solution of a 1D Schrödinger equation.  
In other words, the resulting eigenfunctions of this 3D Schrödinger equation are joint 
eigenfunctions of energy and angular momentum. 
 
[11] Let’s now look at some examples.  We’ll start with a particle trapped inside a sphere, 
which is a bit like the infinite cubical box but now with a spherical boundary.  The potential 
is zero up to some radius “a”, and infinity outside this radius.  We can now write the 
equation for the radial term from the previous slide, setting the potential to be zero in the 
region “r less than a”.  The boundary condition is that the wavefunction must be zero at the 
edge of the sphere, since there is zero probability of finding the particle outside the sphere, 
and the wavefunction is continuous at this point.  So we can set “u equals zero” at “r equals 
a”.  We will have different solutions for different values of “l” in the equation, and here is an 
example of the first energy eigenfunctions for “l equals zero” and “l equals one”.  You can 
check that these examples are solutions by substituting them in the radial equation, and the 
textbook gives more details of these solutions.  These different “l” values correspond to 
different values of total angular momentum, and we also saw in the previous video that we 
can distinguish states which have different values of the “z” component of angular 
momentum by a quantum number “m”.  Therefore, we need three quantum numbers to 
characterise these joint eigenfunctions of energy and angular momentum – one for energy, 
which I’ve labelled “n”, and two for angular momentum, which I’ve labelled “l” and “m”.  
The full eigenfunction, as a function of the spherical polar co-ordinates, is the product of 
this radial piece and the spherical harmonic functions. 
 



[12] Here we can see the first few radial eigenfunctions “u” as a function of radius “r” of the 
particle trapped inside a sphere, for these first two angular momentum states, “l equals 0” 
and “l equals 1”.  All the eigenfunctions hit zero at the edge of the sphere.  If we want to 
determine the probability of finding the particle at different values of the radius, we need to 
compute the modulus squared of the radial eigenfunction, “capital R”, at this point.  
However, we must also include an additional effect – as radius grows, there is more volume 
available for the particle, which creates more chance of finding it at larger radii.  This effect 
produces an extra factor of “r squared” in the probability, which is the volume element in 
spherical polar co-ordinates.  However, since our radial function “u” is already equal to 
“capital R” scaled by the radial co-ordinate, we can just say that the probability of finding 
the particle at different radii is the modulus squared of “u”. 
 
[13] Let’s now apply these methods to the most important case: the hydrogen atom.  In the 
hydrogen atom, an electron orbits the nucleus in a Coulomb potential, which scales as the 
inverse of the radial distance of the electron from the origin.  I’ll substitute in this Coulomb 
potential to the radial equation for a central potential, using the radial eigenfunction “u” as 
before, and I’ll also introduce a new constant “a” which absorbs together the other 
constants.  I then find that the radial equation in the Coulomb potential takes the form 
shown on the slide.  Please feel free to pause the video and verify this equation if you wish 
to do so.  We now need to find the radial eigenfunctions “u” which satisfy this equation. 
 
[14] We can derive the form of the solution to the radial equation by considering two limits.  
First let’s think about the limit where “r” tends to infinity, in which case one of the terms in 
the radial equation becomes negligible, and can be removed.  The result is a simpler 
differential equation in this limit.  We’ve already met this equation when solving the 
Schrödinger equation in one dimension, and we know its solution is a decaying exponential 
function of “r”, where after substitution, the constant “a” is related to the energy.  Now let’s 
think about the opposite limit, where the radius “r” tends to zero.  In this case the other 
term in the radial equation dominates.  A trial function which is a power law in “r” satisfies 
this equation.  This logic tells us that the complete solution to the radial equation must be a 
combination of a power law in “r” and a decaying exponential. 
 
[15] The textbook gives a lot more details about deriving the hydrogen atom eigenfunctions, 
which I won’t reproduce here since we won’t need to know the full derivation.  I’ll just 
summarise some key aspects.  It turns out that the energy eigenvalues only depend on a 
single quantum number, “n”.  And a given energy value has a number degenerate radial 
eigenfunctions, which depend on the value of “l”, the total angular momentum quantum 
number.  In fact, “l” can take on values which range from “l equals 0” to “l equals n minus 
1”, so there are “n” different possibilities.  I’ve included some example radial eigenfunctions 
in this table, and you can find more in the textbook.  As we predicted, these solutions are a 
combination of a polynomial and a decaying exponential in “r”.  There is no solution for “n 
equals 1” and “l equals 1” because the value of “l” is limited to a maximum of “n minus 1”, 
which only includes “l equals 0” in this case. 
 
[16] The radial extent of these hydrogen atom eigenfunctions is characterised by the 
parameter “a” we introduced earlier.  This parameter is known as the Bohr radius and is 
equal to around 5 times 10 to the minus 11 metres.  The Bohr radius characterises the size 



of an atom.  Here’s a plot of the first few radial eigenfunctions of the hydrogen atom, 
expressing these as a radial probability density for the electron by plotting the modulus 
squared of “u”.  These radial probabilities start from zero at the origin, have an exponential 
tail at high “r”, and contain some polynomial oscillations in between.  These graphs tell us 
the probability of finding an electron as a function of the distance from the nucleus, for each 
of these quantum states. 
 
[17] As we mentioned, the energy levels of the hydrogen atom only depend on a single 
quantum number “n”.  These energies are described by the famous Bohr formula where the 
energy is proportional to “1 divided by n squared”.  The ground state, or lowest energy state 
of the hydrogen atom, has an energy of 13.6 electron-volts.  As electrons transition between 
these energy levels, they can release or absorb light at specific frequencies. 
 
[18] Let’s summarise the steps we used to solve the quantum mechanics of the hydrogen 
atom.  We started with the Schrödinger equation in three dimensions.  For the case of a 
central potential, where the potential energy only depends on the distance from the origin, 
we looked for a separable solution where we split the wavefunction into a radial piece and 
an angular piece.  We saw that the angular piece was just the same as the spherical 
harmonic functions, which are the eigenfunctions of angular momentum.  Hence, these 
eigenfunctions have angular momentum values which are characterised by values of the 
quantum numbers “l” and “m”, just as in our discussion of angular momentum.  For a 
Coulomb potential as found in the hydrogen atom, the energy eigenvalues do not depend 
on “l”, but only on a single quantum number “n”, as described by the Bohr formula.  A given 
energy value can be obtained by many different possible angular momentum states.  So 
overall, the hydrogen atom is described by 3 quantum numbers: for the energy, the total 
angular momentum and the “z” component of angular momentum. 
 
[19] Here’s an image where we have visualised some 3D energy eigenfunctions of the 
hydrogen atom by taking a 2D cut through them.  The intensity of the image corresponds to 
the amplitude of the wavefunction, and you can think of the image as showing where the 
electron is most likely to be distributed in each case when viewed from above.  We can see 
some interesting patterns! 
 
[20] How many distinct or degenerate eigenfunctions are associated with each energy 
eigenvalue?  For a given energy level labelled by “n”, we can have “n” different values of the 
quantum number “l”, which ranges from “l equals 0” to “n minus 1”.  For each “l”, we can 
have “2 l plus 1” values of the quantum number “m”, which ranges from “minus l” to “plus 
l”.  When we combine all of these possible states together, we find that there are “n 
squared” different possible states of angular momentum associated with each energy 
eigenvalue.  So for example if the electron is in the fourth energy level with “n equals 4”, it 
can have 16 possible angular momentum configurations consistent with this same energy.  
That is, there are 16 distinct but degenerate eigenfunctions with this energy. 
 
[21] Let’s summarise the key quantum mechanics of the hydrogen atom on one slide.  
We’ve seen that the hydrogen atom has discrete energy levels, given by the Bohr formula.  
For each energy state, there are “n” different possible states of total angular momentum.   
And for each state of total angular momentum, there are “2 l plus 1” different states of the 



“z” component of angular momentum.  Specifying each of these quantum numbers allows 
us to specify the radial piece of the eigenfunction, which depends on “n” and “l”, and the 
angular piece of the eigenfunction, which are the spherical harmonic functions depending 
on “l” and “m”.  We can combine these pieces together to form the total energy 
eigenfunctions. 
 
[22] Here’s a brief reminder of the points we’ve covered in this video.  We started by 
introducing the 3D Schrödinger equation, and the techniques to solve it which involve 
separable solutions.  Considering the case of a particle in a box, we showed that there are 
different eigenfunctions with the same energy, which are known as degenerate states.  
Then we considered central potentials, which only depend on the radius of a particle from 
the origin.  In this case the energy eigenfunctions can be expressed as the product of a radial 
function and an angular function.  The angular piece of the solution is always the spherical 
harmonic functions, which are eigenfunctions of angular momentum, and the radial 
equation can be reduced to a 1D Schrödinger equation.  The hydrogen atom is the most 
important example of this situation, and we studied its energy and angular momentum 
quantum numbers and corresponding eigenfunctions.  That’s all for this video, and see you 
soon! 


