Section 5: The Hydrogen Atom

In these slides we will cover:

The 3D Schrodinger equation
Particle in a box and degenerate quantum states
Radial and angular solutions for central potentials

|dentification of the angular piece with the angular
momentum eigenfunctions (spherical harmonics)

Infinite spherical well
Solution of the radial equation for the Coulomb potential
Eigenfunctions of the hydrogen atom

Quantum numbers of the hydrogen atom




Particle in a box

The 3D Schrodinger Equation

 We now move from particles in 1D space, to 3D space

2
* The derivative in 1 dimension, ;— is replaced by its 3D

02 = 92 | 92
. ' H ” 2 —_— —
equivalent, the “Laplacian” operator V' = oz T 5y 2 T 5.2

 The 3D time-independent Schrodinger equation for the
energy eigenfunctions ¥ (x, y, z) and eigenvalues E is hence:
- ( 21/) 621/) aZl/j

ox? T a2 T o ) +V (09,2 Y(6,y,2) = E(x,,2)

* The normalisation condition for the 3D wavefunction is
J_ dx[__dy[__dz|P(x,y,2z)|* =1



Particle in a box

Particle in a box

A good example is a “particle in a box” with potential

0, Ix[<Llyl<Llz|<L
00, outside the box

V(x) = {

* We look for a separable solution

Y(x,y,z) = f(x) gly) h(z)

* We find, by substituting this trial solution in the 3D Schrodinger
equation and re-arranging,

2] 1 d?f 1 d?g 1 dzh]_

- 2m f(x) dx? * g(y) dy? * h(z) dz?>



Particle in a box

Particle in a box

That last equation again:
R2[ 1 d?f 1 d?¢9 1 d%h
_ + -+ = F
2m|f(x)dx? g(y)dy? h(z)dz?

We can solve this equation using a nice piece of logic:

= each term in the squared bracket only depends on 1 variable (x, y or z)
= each of those variables is free to vary independently from the others

= in this case, the only way to make the terms always sum to a constant
is if each individual term in the squared bracket is separately a constant

We find that each separate function f, g, h satisfies the 1D
Schrodinger equation for the infinite potential well. We
multiply them together for the total solution, ¥ = f -g-h



Particle in a box

Particle in a box

Summarising, the particle in a box has energy eigenfunctions
labelled by three quantum numbers (1, n,,n;)

W3 (x,y,2) = P20 Y () Y2 (2)

1D (x) are the different states n which are solutions of the 1D
infinite potential well

The energy eigenvalues are then the sum of the corresponding
eigenvalues for the 1D infinite potential well,

w2 h?
8mlL?

We notice here that distinct eigenfunctions can have the same
energy (degenerate states), e.g. (2,1,1), (1,2,1) and (1,1,2)

E(ny,ny,n,) = (n2 + ns + n2)



Central potentials

Radial and angular solutions for central potentials

* A central potential depends only on the distance from the
origin, V(x,y,z) = V(r). Animportant example is, the
potential around a hydrogen nucleus (proton) at the origin

Z 4

(Sorry for the illustration
with classical point particles.
They are of course
probability clouds in QM!)




Central potentials

Radial and angular solutions for central potentials

* A central potential depends only on the distance from the
origin, V(x,y,z) = V(r). Animportant example is, the
potential around a hydrogen nucleus (proton) at the origin

 These problems are best treated using spherical polar co-
ordinates, (1,6, ¢)

* Non-examinable: we need the expression for the Laplacian in
spherical polar co-ordinates (ouch!):

2 _ 16(26)+ 1 0( 86) 1 92
r2ar\' ar) " rZsin6 90 sin 06 rzsinZH 02




Central potentials

Radial and angular solutions for central potentials

 Non-examinable: We again look for a separable solution for the
energy eigenfunctions,

Switching to using u for
mass, since m is about

l/)(?‘, 6' ¢) = R(T‘) Y(H’ ¢) to mean something else

e Substituting this in the 3D Schrédinger equation and re-arran;}/g, we find:

Al 1 6( HGY) 1 0%Y hZa(zaR)” F— V()] 2
Y |sin6 06 sin 00/  sin?0 d¢? R ar\ ar H mAT

e By asimilar logic to the cubical box solution ... the left-hand side of this
equation is a function of (8, ¢) only and the right-hand side is a function of
r only. But they must remain equal as (1, 8, ¢) vary independently. So they

must both be equal to the same constant, let’s call it A



Central potentials

Radial and angular solutions for central potentials

The left-hand side of this equation becomes,

72 | a('96)+ L 9" v 6,6) = 176, 6)
sng 20 """ %50) T sinzgagz| V0 P) = 2

Aha! The left-hand side is just the operator for the total
angular momentum, [2, from the previous Section:

I?Y =11+ Dh%*Y

Hence, the angular piece of the energy eigenfunctions for a
central potential is just the spherical harmonic functions
Y1 (0, ®) where A = (I + 1)h? —that’s convenient




Central potentials

Radial and angular solutions for central potentials

* Substituting A = L(I + 1)A? in the radial piece, we find

[(l + 1)h?

T R=ER

{ =mass] 2ur?dr

[Again, ht 1 d ( , dR

=)+ [vm +

A useful change of variables is to substitute u(r) = r - R(r)
[i.e. R = u/r]. Inthis case,

Note: this equation
depends on the angular
u=FEu momentum state, through [

hedtu V) +
2 dr? "

[(l + 1)h?
2Ur?

* We note that this looks just like a 1D Schrodinger equation,
except the usual potential has been replaced by an “effective

— L(1+1)h?
potential” V(r) + e




Central potentials

Infinite spherical well

A good example of this is a “particle in a sphere”, where

V(r) = {

0, r<a
00, r>a

In this case, the energy eigenfunctions u,, () at r < a satisfy
A2 d?u, [I1(I + 1)h?
2u dr?

Boundary conditionisu = 0 at r = a. The first eigenfunctions

Sinkr _ COS kr) forl =1

u, = Euy,

2ur?

are u « sin kr for [ =Oanduoc( —

Note that the full energy eigenfunction also includes the
angular piece, Y(r,0,¢) = [u,(r)/r] Y1, (0, ) — the state of
the particle is characterised by 3 qguantum numbers n, [, m



Central potentials

Infinite spherical well

* Here are the first few radial eigenfunctions for two values of [:

u(r) (unnormalised) u(r) (unnormalised)

1.0 s .
\‘ S l =1
\\\\\

...................

* The probability of finding the particle between r and r + dr is
given by 72|y|? o« r?|R|? o« |u|? —the extra factor of 2 is
appearing because of the volume element in spherical polars



Eigenfunctions of the hydrogen atom

Solution of radial equation for Coulomb potential

* However, the most important example —e
of a central potential is an electron in a .
hydrogen atom orbiting around a
nucleus, which follows the Coulomb r
: e?
potential energy, V(r) = — Py
* In this case the radial equation Q
becomes (where a = 4megh? /ue?),
+e
dzun l(l _|_ 1) 2 ,LLE (Sorry fqr the i{/ustrati'on
— 5 + | —— + = U, with classical point particles.
dr ar They are of course

probability clouds in QM!)



Eigenfunctions of the hydrogen atom

Solution of radial equation for Coulomb potential

We can solve this equation by considering two limits ...

d°u _ 2uE

If r — oo, we have =z W We recognise this equation
: : h2
as having solution u(r) o« e~"/%, where E = — P

d°u | l(1+1 : :
Ifr — 0, we have — drlzt + (TJ; 2y = 0. This equation has a
I+1

solution u(r) o« r

This logic motivates that the complete solution is a polynomial
multiplied by an exponential, depending on the value of [



Eigenfunctions of the hydrogen atom

Eigenfunctions for hydrogen atom

* The textbook explains [we won’t give the derivation here since it’s a bit
involved...] that the energy eigenvalues E,, can be characterised
by a single quantum number n, and a given energy has n
degenerate eigenfunctions u,;(r) givenbyl =0,1,...,n — 1

* Here are some solutions for R,,;(r) = u,,;(r)/r corresponding
to the first two values of n = 1,2 and the allowed values of [:

n=1 n=2
2 1 .
—_— _ — — _ -r/2a
[ =0 Ry = —7€ r/a R, > 32 (1 _Za) e
1 r
— — _) p—T/2a
[ =1 (not allowed) R,4 N (a)e



Eigenfunctions of the hydrogen atom

Eigenfunctions for hydrogen atom

The radial extent of the
eigenfunctions are
characterised by the
ATtegh®

pe?
5.3%x10~11 m known as the

Bohr radius

parameter a =

Here are the first few radial
eigenfunctions, plotted as a
probability density |u,;|? =
rlenllz

Probability density = r2|Rn(r)]2
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Eigenfunctions of the hydrogen atom

Energy levels and quantum numbers of hydrogen atom

* The textbook shows that the energy eigenvalues only depend
2

2
onn, and are given by E,, = —E; /n?, where E; = 2;2 (4; ) .
0

This is the famous Bohr formula for the hydrogen energy levels
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Image credit:
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Eigenfunctions of the hydrogen atom

Energy levels and quantum numbers of hydrogen atom

* Let’s recap the full argument:

1. The Schrédinger equation for a central potential always has
separable solutions Y (r, 0, ¢) = R,;(r) Y;,,,(0, ), where Yy, are
the spherical harmonics and R,;; satisfies a radial equation

2. Hence, these are automatically eigenfunctions of angular
momentum, with L = [(l + 1)h? and L, = mh (=l < m < +1)

3. For a Coulomb potential in particular, the energy eigenvalues do not
depend on [, but only on a single quantum numbern, E,, =
— E,/n?, with the restriction0 <l <n—1

4. There are hence 3 quantum numbers which characterise the
hydrogen atom: total energy (n), total angular momentum ([) and
the z-component of angular momentum (m)




Eigenfunctions of the hydrogen atom

Energy levels and quantum numbers of hydrogen atom

* The full eigenfunctions Y (7, 8, ¢) are a combination of the
radial eigenfunction and spherical harmonics:

Hydrogen Electron Orbitals

Probability Density
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Eigenfunctions of the hydrogen atom

Energy levels and quantum numbers of hydrogen atom

specific energy n ...

* There are n possible
values of [

* For each [, there are
(21 + 1) allowed values
of m

 Combining all those, we
find n? distinct states

IR

*VYYY

W &Ly 8 =

YYYYY

Paschen
series

YYYYY

Counting the number of distinct eigenstates associated with a

Excited
states

Ground

state




Eigenfunctions of the hydrogen atom

Summary

where E; =

The hydrogen atom has discrete energy levels E,

E1/n2,

) and n is the energy quantum number

For each state n, there are n different values of [ =
(0,1, ...,n — 1), where lis the quantum number for total
angular momentum and L? = [(l + 1)A*

For each state [, there are (21 + 1) different values of m =
(=,,—-l+1,..,1—1,1), where mis the quantum number for
the z-component of angular momentum and L, = mh

The energy eigenfunctions are then 1,,;,,, (1,6, ) =

Rnl (7") Ylm(el ¢) =

Dy, (6, ¢)



Summary

Particle in a box

Central potentials

Eigenfunctions of
the hydrogen
atom

The 3D time-independent Schrodinger equation is

" p2y 4 vy = By, where 2 = 2 4 O 4
2m o ! ere T 9x2 | 9y2  9z2

A convenient method of solving is to search for a
wavefunction separable in the system co-ordinates

Different eigenfunctions which have the same energy
are called degenerate states

If the potential depends only on the radius r, then the
angular piece of Y is the angular momentum
eigenfunctions, the spherical harmonics Y;,, (6, @)

The radial piece of Y satisfies the 1D Schrédinger
equation for an effective potential, depending on [

For a Coulomb potential, the radial piece takes the
form of a polynomial multiplied by an exponential

The hydrogen atom is characterised by quantum
numbers (n,l, m) for (E,L*, L,) where0 <l <n-—1
and—-l<m<1




