
Section	5:	The	Hydrogen	Atom

In	these	slides	we	will	cover:

• The	3D	Schrödinger	equation

• Particle	in	a	box	and	degenerate	quantum	states

• Radial	and	angular	solutions	for	central	potentials

• Identification	of	the	angular	piece	with	the	angular	
momentum	eigenfunctions (spherical	harmonics)

• Infinite	spherical	well

• Solution	of	the	radial	equation	for	the	Coulomb	potential

• Eigenfunctions of	the	hydrogen	atom

• Quantum	numbers	of	the	hydrogen	atom



Particle	in	a	box

The	3D	Schrödinger	Equation

• We	now	move	from	particles	in	1D	space,	to	3D	space

• The	derivative	in	1	dimension,	 !
"

!#"
,	is	replaced	by	its	3D	

equivalent,	the	“Laplacian”	operator	𝛻% = '"

'#"
+ '"

')"
+ '"

'*"

• The	3D	time-independent	Schrödinger	equation	for	the	
energy	eigenfunctions 𝜓(𝑥, 𝑦, 𝑧) and	eigenvalues	𝐸 is	hence:

• The	normalisation condition	for	the	3D	wavefunction is	
∫ 𝑑𝑥5
65 ∫ 𝑑𝑦5

65 ∫ 𝑑𝑧5
65 𝜓(𝑥, 𝑦, 𝑧) % = 1

−
ℏ%

2𝑚
𝜕%𝜓
𝜕𝑥% +

𝜕%𝜓
𝜕𝑦% +

𝜕%𝜓
𝜕𝑧% + 𝑉 𝑥, 𝑦, 𝑧 	𝜓 𝑥, 𝑦, 𝑧 = 𝐸	𝜓 𝑥, 𝑦, 𝑧



Particle	in	a	box

Particle	in	a	box

• A	good	example	is	a	“particle	in	a	box”	with	potential

• We	look	for	a	separable	solution

• We	find,	by	substituting	this	trial	solution	in	the	3D	Schrödinger	
equation	and	re-arranging,

𝑉 𝑥 = ?0, 𝑥 < 𝐿, 𝑦 < 𝐿, 𝑧 < 𝐿
	∞, 														outside	the	box

𝜓 𝑥, 𝑦, 𝑧 = 𝑓 𝑥 	𝑔 𝑦 	ℎ(𝑧)

−
ℏ%

2𝑚
1

𝑓 𝑥
𝑑%𝑓
𝑑𝑥% +

1
𝑔 𝑦

𝑑%𝑔
𝑑𝑦% +

1
ℎ 𝑧

𝑑%ℎ
𝑑𝑧% = 𝐸



Particle	in	a	box

Particle	in	a	box

• That	last	equation	again:

• We	can	solve	this	equation	using	a	nice	piece	of	logic:
§ each	term	in	the	squared	bracket	only	depends	on	1	variable	(𝑥,	𝑦 or	𝑧)

§ each	of	those	variables	is	free	to	vary	independently	from	the	others

§ in	this	case,	the	only	way	to	make	the	terms	always	sum	to	a	constant	
is	if	each	individual	term	in	the	squared	bracket	is	separately	a	constant

• We	find	that	each	separate	function	𝑓, 𝑔, ℎ satisfies	the	1D	
Schrödinger	equation	for	the	infinite	potential	well.		We	
multiply	them	together	for	the	total	solution,	𝜓 = 𝑓 Q 𝑔 Q ℎ

−
ℏ%

2𝑚
1

𝑓 𝑥
𝑑%𝑓
𝑑𝑥% +

1
𝑔 𝑦

𝑑%𝑔
𝑑𝑦% +

1
ℎ 𝑧

𝑑%ℎ
𝑑𝑧% = 𝐸



Particle	in	a	box

Particle	in	a	box

• Summarising,	the	particle	in	a	box	has	energy	eigenfunctions
labelled	by	three	quantum	numbers	(𝑛#, 𝑛), 𝑛*)

• 𝜓STU(𝑥) are	the	different	states	𝑛 which	are	solutions	of	the	1D	
infinite	potential	well

• The	energy	eigenvalues	are	then	the	sum	of	the	corresponding	
eigenvalues	for	the	1D	infinite	potential	well,

• We	notice	here	that	distinct	eigenfunctions can	have	the	same	
energy	(degenerate	states),	e.g.	(2,1,1),	(1,2,1) and	(1,1,2)

𝜓VU 𝑥, 𝑦, 𝑧 = 𝜓SW
TU 𝑥 	𝜓SX

TU 𝑦 	𝜓SY
TU(𝑧)

𝐸(𝑛#, 𝑛), 𝑛*) =
𝜋%ℏ%

8𝑚𝐿% 𝑛#% + 𝑛)% + 𝑛*%



Central	potentials

Radial	and	angular	solutions	for	central	potentials

• A	central	potential	depends	only	on	the	distance	from	the	
origin,	𝑉 𝑥, 𝑦, 𝑧 = 𝑉(𝑟).		An	important	example	is,	the	
potential	around	a	hydrogen	nucleus	(proton)	at	the	origin

𝑟

+𝑒

−𝑒
(Sorry	for	the	illustration	

with	classical	point	particles.		
They	are	of	course	

probability	clouds	in	QM!)

𝑥 𝑦

𝑧



Central	potentials

Radial	and	angular	solutions	for	central	potentials

• A	central	potential	depends	only	on	the	distance	from	the	
origin,	𝑉 𝑥, 𝑦, 𝑧 = 𝑉(𝑟).		An	important	example	is,	the	
potential	around	a	hydrogen	nucleus	(proton)	at	the	origin

• These	problems	are	best	treated	using	spherical	polar	co-
ordinates,	(𝑟, 𝜃, 𝜙)

• Non-examinable:	we	need	the	expression	for	the	Laplacian	in	
spherical	polar	co-ordinates	(ouch!):

𝛻% =
1
𝑟%

𝜕
𝜕𝑟 𝑟%

𝜕
𝜕𝑟 +

1
𝑟% sin 𝜃

𝜕
𝜕𝜃 sin 𝜃

𝜕
𝜕𝜃 +

1
𝑟%sin%𝜃

𝜕%

𝜕𝜙%



Central	potentials

Radial	and	angular	solutions	for	central	potentials

• Non-examinable:	We	again	look	for	a	separable	solution	for	the	
energy	eigenfunctions,

• Substituting	this	in	the	3D	Schrödinger	equation	and	re-arranging,	we	find:

• By	a	similar	logic	to	the	cubical	box	solution	… the	left-hand	side	of	this	
equation	is	a	function	of	(𝜃, 𝜙) only	and	the	right-hand	side	is	a	function	of	
𝑟 only.		But	they	must	remain	equal	as	(𝑟, 𝜃, 𝜙) vary	independently.		So	they	
must	both	be	equal	to	the	same	constant,	let’s	call	it	𝜆

𝜓 𝑟, 𝜃, 𝜙 = 𝑅 𝑟 	𝑌(𝜃, 𝜙)

−
ℏ%

𝑌
1

sin 𝜃
𝜕
𝜕𝜃 sin 𝜃

𝜕𝑌
𝜕𝜃 +

1
sin%𝜃

𝜕%𝑌
𝜕𝜙% =

ℏ%

𝑅
𝜕
𝜕𝑟 𝑟%

𝜕𝑅
𝜕𝑟 + 2𝜇 𝐸 − 𝑉 𝑟 	𝑟%

Switching	to	using	𝜇 for	
mass,	since	𝑚 is	about	
to	mean	something	else



Central	potentials

Radial	and	angular	solutions	for	central	potentials

• The	left-hand	side	of	this	equation	becomes,

• Aha!		The	left-hand	side	is	just	the	operator	for	the	total	
angular	momentum,	𝐿e%,	from	the	previous	Section:

• Hence,	the	angular	piece	of	the	energy	eigenfunctions for	a	
central	potential	is	just	the	spherical	harmonic	functions	
𝑌fg(𝜃, 𝜙) where	𝜆 = 𝑙 𝑙 + 1 ℏ% – that’s	convenient

−ℏ%
1

sin 𝜃
𝜕
𝜕𝜃 sin 𝜃

𝜕
𝜕𝜃 +

1
sin%𝜃

𝜕%

𝜕𝜙% 𝑌 𝜃, 𝜙 = 𝜆	𝑌 𝜃, 𝜙

𝐿e%	𝑌 = 𝑙 𝑙 + 1 ℏ%	𝑌



Central	potentials

Radial	and	angular	solutions	for	central	potentials

• Substituting	𝜆 = 𝑙 𝑙 + 1 ℏ% in	the	radial	piece,	we	find

• A	useful	change	of	variables	is	to	substitute	𝑢 𝑟 = 𝑟 Q 𝑅(𝑟)
[i.e.	𝑅 = 𝑢/𝑟].		In	this	case,

• We	note	that	this	looks	just	like	a	1D	Schrödinger	equation,	
except	the	usual	potential	has	been	replaced	by	an	“effective	

potential” 𝑉 𝑟 + f fkT ℏ"

%lm"

−
ℏ%

2𝜇
1
𝑟%

𝑑
𝑑𝑟 𝑟%

𝑑𝑅
𝑑𝑟 + 𝑉 𝑟 +

𝑙 𝑙 + 1 ℏ%

2𝜇𝑟% 𝑅 = 𝐸	𝑅

−
ℏ%

2𝜇
𝑑%𝑢
𝑑𝑟% + 𝑉 𝑟 +

𝑙 𝑙 + 1 ℏ%

2𝜇𝑟% 𝑢 = 𝐸	𝑢

[Again,	
𝜇 =mass]

Note:	this	equation	
depends	on	the	angular	
momentum	state,	through	𝑙



Central	potentials

Infinite	spherical	well

• A	good	example	of	this	is	a	“particle	in	a	sphere”,	where

• In	this	case,	the	energy	eigenfunctions 𝑢S(𝑟) at	𝑟 < 𝑎 satisfy

• Boundary	condition	is	𝑢 = 0 at	𝑟 = 𝑎.		The	first	eigenfunctions
are	𝑢 ∝ sin 𝑘𝑟 for	𝑙 = 0 and	𝑢 ∝ qrs tm

tm
− cos 𝑘𝑟 for	𝑙 = 1

• Note	that	the	full	energy	eigenfunction also	includes	the	
angular	piece,	𝜓 𝑟, 𝜃, 𝜙 = [𝑢S 𝑟 /𝑟]	𝑌fg(𝜃, 𝜙) – the	state	of	
the	particle	is	characterised	by	3	quantum	numbers	𝑛, 𝑙,𝑚

𝑉 𝑟 = ?0, 𝑟 < 𝑎
	∞, 𝑟 > 𝑎

−
ℏ%

2𝜇
𝑑%𝑢S
𝑑𝑟% +

𝑙 𝑙 + 1 ℏ%

2𝜇𝑟% 𝑢S = 𝐸	𝑢S



Central	potentials

Infinite	spherical	well

• Here	are	the	first	few	radial	eigenfunctions for	two	values	of	𝑙:	

• The	probability	of	finding	the	particle	between	𝑟 and	𝑟 + 𝑑𝑟 is	
given	by	𝑟% 𝜓 % ∝ 𝑟% 𝑅 % ∝ 𝑢 % – the	extra	factor	of	𝑟% is	
appearing	because	of	the	volume	element	in	spherical	polars

𝑙 = 0 𝑙 = 1
𝑢(𝑟) (unnormalised) 𝑢(𝑟) (unnormalised)

𝑟/𝑎 𝑟/𝑎

edge
edge



Eigenfunctions of	the	hydrogen	atom

Solution	of	radial	equation	for	Coulomb	potential

• However,	the	most	important	example	
of	a	central	potential	is	an	electron	in	a	
hydrogen	atom	orbiting	around	a	
nucleus,	which	follows	the	Coulomb	

potential	energy,	𝑉 𝑟 = − y"

z{|}m

• In	this	case	the	radial	equation	
becomes	(where	𝑎 = 4𝜋𝜀�ℏ%/𝜇𝑒%),

−
𝑑%𝑢S
𝑑𝑟% + −

2
𝑎𝑟 +

𝑙 𝑙 + 1
𝑟% 𝑢S =

2𝜇𝐸
ℏ% 	𝑢S

𝑟

+𝑒

−𝑒

(Sorry	for	the	illustration	
with	classical	point	particles.		

They	are	of	course	
probability	clouds	in	QM!)



Eigenfunctions of	the	hydrogen	atom

Solution	of	radial	equation	for	Coulomb	potential

• We	can	solve	this	equation	by	considering	two	limits	…

• If	𝑟 → ∞,	we	have	−!"�
!m"

= %l�
ℏ"
𝑢.		We	recognise	this	equation	

as	having	solution	𝑢(𝑟) ∝ 𝑒6m/�,	where	𝐸 = − ℏ"

%l�"

• If	𝑟 → 0,	we	have	−!"�
!m"

+ f(fkT)
m"

𝑢 = 0.		This	equation	has	a	
solution	𝑢(𝑟) ∝ 𝑟fkT

• This	logic	motivates	that	the	complete	solution	is	a	polynomial	
multiplied	by	an	exponential,	depending	on	the	value	of	𝑙



Eigenfunctions of	the	hydrogen	atom

• The	textbook	explains	[we	won’t	give	the	derivation	here	since	it’s	a	bit	
involved…] that	the	energy	eigenvalues	𝐸S can	be	characterised	
by	a	single	quantum	number	𝑛,	and	a	given	energy	has	𝑛
degenerate	eigenfunctions 𝑢Sf(𝑟) given	by	𝑙 = 0,1, … , 𝑛 − 1

• Here	are	some	solutions	for	𝑅Sf 𝑟 = 𝑢Sf(𝑟)/𝑟 corresponding	
to	the	first	two	values	of	𝑛 = 1,2 and	the	allowed	values	of	𝑙:

𝑅T� =
2
𝑎V/%

𝑒6m/�

𝑛 = 1 𝑛 = 2

𝑙 = 0

𝑙 = 1

𝑅%� =
1

2� 	𝑎V/%
1 −

𝑟
2𝑎 𝑒6m/%�

𝑅%T =
1

2 6� 𝑎V/%
𝑟
𝑎 𝑒6m/%�(not	allowed)

Eigenfunctions for	hydrogen	atom



Eigenfunctions of	the	hydrogen	atom

• The	radial	extent	of	the	
eigenfunctions are	
characterised	by	the	

parameter	𝑎 = z{|}ℏ"

ly"
=

5.3×106TT	𝑚 known	as	the	
Bohr	radius

• Here	are	the	first	few	radial	
eigenfunctions,	plotted	as	a	
probability	density	 𝑢Sf % =
𝑟% 𝑅Sf %

Eigenfunctions for	hydrogen	atom



Eigenfunctions of	the	hydrogen	atom

Energy	levels	and	quantum	numbers	of	hydrogen	atom

• The	textbook	shows	that	the	energy	eigenvalues	only	depend	

on	𝑛,	and	are	given	by	𝐸S = −𝐸T/𝑛%,	where	𝐸T =
l
%ℏ"

y"

z{|}

%
.		

This	is	the	famous	Bohr	formula	for	the	hydrogen	energy	levels

Image	credit:	
Hyperphysics



Eigenfunctions of	the	hydrogen	atom

Energy	levels	and	quantum	numbers	of	hydrogen	atom

• Let’s	recap	the	full	argument:

1. The	Schrödinger	equation	for	a	central	potential	always	has	
separable	solutions	𝜓(𝑟, 𝜃, 𝜙) = 𝑅Sf 𝑟 	𝑌fg(𝜃, 𝜙),	where	𝑌fg are	
the	spherical	harmonics	and	𝑅Sf satisfies	a	radial	equation

2. Hence,	these	are	automatically	eigenfunctions of	angular	
momentum,	with	𝐿% = 𝑙(𝑙 + 1)ℏ% and	𝐿* = 𝑚ℏ (−𝑙 ≤ 𝑚 ≤ +𝑙)

3. For	a	Coulomb	potential	in	particular,	the	energy	eigenvalues	do	not	
depend	on	𝑙,	but	only	on	a	single	quantum	number	𝑛,	𝐸S =
− 𝐸T/𝑛%,	with	the	restriction	0 ≤ 𝑙 ≤ 𝑛 − 1

4. There	are	hence	3	quantum	numbers	which	characterise the	
hydrogen	atom:	total	energy	(𝑛),	total	angular	momentum	(𝑙)	and	
the	𝑧-component	of	angular	momentum	(𝑚)	



Eigenfunctions of	the	hydrogen	atom

Energy	levels	and	quantum	numbers	of	hydrogen	atom

• The	full	eigenfunctions 𝜓(𝑟, 𝜃, 𝜙) are	a	combination	of	the	
radial	eigenfunction and	spherical	harmonics:



Eigenfunctions of	the	hydrogen	atom

Energy	levels	and	quantum	numbers	of	hydrogen	atom

• Counting	the	number	of	distinct	eigenstates	associated	with	a	
specific	energy	𝑛 …

• There	are	𝑛 possible	
values	of	𝑙

• For	each	𝑙,	there	are	
(2𝑙 + 1) allowed	values	
of	𝑚

• Combining	all	those,	we	
find	𝑛% distinct	states



Eigenfunctions of	the	hydrogen	atom

Summary

• The	hydrogen	atom	has	discrete	energy	levels	𝐸S = −𝐸T/𝑛%,	

where	𝐸T =
l
%ℏ"

y"

z{|}

%
and	𝒏 is	the	energy	quantum	number

• For	each	state	𝑛,	there	are	𝑛 different	values	of	𝑙 =
(0,1, … , 𝑛 − 1),	where	𝒍 is	the	quantum	number	for	total	
angular	momentum and	𝐿% = 𝑙(𝑙 + 1)ℏ%

• For	each	state	𝑙,	there	are	(2𝑙 + 1) different	values	of	𝑚 =
(−𝑙, −𝑙 + 1,… , 𝑙 − 1, 𝑙),	where	𝒎 is	the	quantum	number	for	
the	𝒛-component	of	angular	momentum and	𝐿* = 𝑚ℏ

• The	energy	eigenfunctions are	then	𝜓Sfg 𝑟, 𝜃, 𝜙 =
𝑅Sf 𝑟 	𝑌fg 𝜃, 𝜙 = ���(m)

m
	𝑌fg 𝜃, 𝜙



Summary

Eigenfunctions of	
the	hydrogen	

atom

Central	potentials

• For	a	Coulomb	potential,	the	radial	piece	takes	the	
form	of	a	polynomial	multiplied	by	an	exponential

• The	hydrogen	atom	is	characterised	by	quantum	
numbers	(𝑛, 𝑙, 𝑚) for	(𝐸, 𝐿%, 𝐿*) where	0 ≤ 𝑙 ≤ 𝑛 − 1
and	−𝑙 ≤ 𝑚 ≤ 𝑙

• If	the	potential	depends	only	on	the	radius	𝑟,	then	the	
angular	piece	of	𝜓 is	the	angular	momentum	
eigenfunctions,	the	spherical	harmonics	𝑌fg(𝜃, 𝜙)

• The	radial	piece	of	𝜓 satisfies	the	1D	Schrödinger	
equation	for	an	effective	potential,	depending	on	𝑙

• The	3D	time-independent	Schrödinger	equation	is	

− ℏ"

%g
𝛻%𝜓 + 𝑉𝜓 = 𝐸𝜓,	where	𝛻% = '"

'#"
+ '"

')"
+ '"

'*"

• A	convenient	method	of	solving	is	to	search	for	a	
wavefunction separable	in	the	system	co-ordinates

• Different	eigenfunctions which	have	the	same	energy	
are	called	degenerate	states

Particle	in	a	box


