
Transcript for Video 3: 1D Schrödinger equation 
 
[1] Welcome everyone to our third quantum mechanics video!  Today I want to discuss with 
you the 1D Schrödinger equation, which means the Schrödinger equation of a particle 
travelling along 1 axis in position with co-ordinate “x”.  We’ll talk about how to solve this 
equation in different circumstances: for particles enclosed by a square potential well, for 
particles contained by a harmonic oscillator potential, and for beams of particles which are 
incident on a potential step or barrier. 
 
[2] In the previous video we saw that the solutions to the Schrödinger equation for particles 
of constant energy are stationary states, in which the particle’s wavefunction is the product 
of an energy eigenfunction, which depends on position “x”, and a complex exponential 
function which depends on time “t” and the energy value.  We’ve labelled these energy 
states with an integer “n” to indicate there are multiple possible solutions with different 
energy values.  The energy eigenfunction must satisfy the time-independent Schrödinger 
equation, which we can see on the slide.  A common problem in quantum mechanics is to 
solve this differential equation for the energy eigenfunctions, given a particular potential 
energy function, “V(x)”.  Let’s also recall that the time-independent Schrödinger equation is 
just the same as the eigenfunction-eigenvalue relation for the Hamiltonian or energy 
operator. 
 
[3] The wavefunction in quantum mechanics must satisfy certain conditions, which help us 
find valid solutions to the Schrödinger equation.  These conditions are known as boundary 
conditions, and such conditions are always needed when solving differential equations like 
the Schrödinger equation.  For the Schrödinger equation there are two key boundary 
conditions.  First, the wavefunction must be a continuous function of “x”, meaning that 
there are no sudden jumps in the wavefunction.  This is because the wavefunction 
represents a probability, and the probability must be well-defined at every point.  A sudden 
jump in the wavefunction would imply that there are multiple values of probability, which is 
not allowed!  The second boundary condition the wavefunction must satisfy leads from the 
first.  If the wavefunction is continuous, then the form of the Schrödinger equation shows 
that the first derivative of the wavefunction must also be continuous.  This is because the 
Schrödinger equation depends on the second derivative of the wavefunction, which can 
only be cleanly evaluated if the first derivative is continuous.  The only exception to this 
second condition is where there’s an infinite jump in potential. 
 
[4] A classic example of applying these boundary conditions to solve the wavefunction, or 
energy eigenfunction, is for a particle enclosed in an infinite square potential well.  Let’s 
recap the solution to this problem.  An infinite square well means that we have a potential 
function which is zero across the width of the well – we’ll take that to extend across the 
range “x = -L” to “x = +L” – and infinity outside that range.  To solve for the wavefunction, 
we first consider the time-independent Schrödinger equation inside the potential well, 
where the potential is zero.   This takes the form of a second-order differential equation for 
the energy eigenfunctions corresponding to energy “E”, which has solutions of the form 
“sine k x” and “cosine k x”.   We can check these are solutions just by substituting them into 
the Schrödinger equation, after which we find a relation between “k” and the energy of the 
state.  The constant “N” at the front of the solutions is the normalisation constant, which we 



can set by ensuring that the modulus squared of the wavefunction integrates to “1” over 
the range.  Next, we know that the particle cannot enter the outer region where the 
potential is infinity.  This must mean there is zero probability of finding the particle in this 
region, hence the wavefunction must be zero in this outer region.  However, we know from 
the boundary conditions that the wavefunction must always be continuous, and so the 
wavefunction is therefore tied to be zero at the edges of the potential well, where “x = -L” 
or “x = +L”.  Looking at our sine and cosine solutions, which oscillate according to “k times 
x”, this implies that the value of “k” is restricted to certain discrete choices which mean that 
the sines and cosines perfectly fit inside the potential well, producing a value of zero at the 
edges.  These discrete values of “k” lead to discrete values of energy, since the energy 
depends on “k”.  Putting this all together and determining the normalisation constant, we 
can find the set of possible energy eigenfunctions and eigenvalues shown on the slide, 
which are labelled by integer values of “n”. 
 
[5] Let’s have a look at the shapes of these energy eigenfunctions: they are sines and 
cosines which are tied to reach zero at the edges of the potential well.  Here’s a plot of the 
first few energy eigenfunctions.  Just for clarity, in this diagram the eigenfunctions have 
been offset along the y-axis to help distinguish them.  Since these are energy 
eigenfunctions, particles which have these wavefunctions would have known, fixed energy 
values. 
 
[6] Let’s now consider a more complicated scenario: a particle enclosed in a finite square 
well.  It’s a similar set-up to the infinite square well, except the potential outside the well 
takes on the finite value “V_0”, not infinity like before.  We’ll focus here on bound energy 
states of the particle, which are defined such that the particle’s energy value is less than the 
height of the potential well.  In classical physics, it would not be possible for a particle with 
such an energy to be found in the region outside the box, since this would violate 
conservation of energy.  However, we’ll shortly see that in quantum mechanics, the particle 
can actually appear in the forbidden region!  This is a phenomenon known as quantum 
tunnelling.  Let’s now solve for the wavefunction of the finite square well and see how this 
situation can occur. 
 
[7] Our recipe for determining the wavefunction is to solve the time-independent 
Schrödinger equation and apply the boundary conditions.  I’ll separate the solution into two 
separate cases for different ranges of “x”.  The first case is for inside the square well, for “x” 
values between “-L” and “+L”.  Here, the potential energy is zero.  This is exactly the same 
situation as for the infinite potential well, so I can write down the same solution as before.  I 
obtain a family of even solutions, or cosine functions, and odd solutions, or sine functions, 
where even and odd here refer to the symmetry of the function about the point “x = 0”.  
Now let’s consider the second range of “x” outside the well, where the potential is equal to 
“V_0”.  The Schrödinger equation here takes on an altered form because of the potential 
energy contribution, where the sign of the second term of the equation has changed 
compared to before, because for bound states the energy value “E” is less than “V_0”.  
Because of this sign change, the sines and cosines we used as solutions inside the well will 
no longer work here.  Instead, the form of the solution outside the well is an exponential 
function depending on a variable I’ve called “l”, which can cause the exponential to either 
rise or decay depending on its sign.  We can demonstrate this exponential solution works by 



substituting it into the Schrödinger equation, after which we find a relation for “l” in terms 
of the energy and potential values.  There’s an important restriction on which of these types 
of exponentials are allowed.  If the wavefunction represents a probability, it must be 
normalised across the full range of “x”, from “minus infinity” to “plus infinity”, such that it 
integrates to give “1”.  For this to work, the wavefunction must approach zero in the limits 
of plus or minus infinity, otherwise it could not be normalised.  Therefore we always need to 
use the decaying exponential solution in each direction. 
 
[8] I can now paste together the complete solution from these different regions and apply 
the boundary conditions.  I’ll focus here on the even solutions in the middle zone, using the 
cosine solutions.  I’ll also write down the form of the solution to higher “x” values, which is 
the decaying exponential.  We can find the unknown amplitudes in these solutions using the 
boundary conditions.  First, let’s require that the wavefunction is continuous at “x = +L”.  
This condition requires me to equate the wavefunctions at this point, obtaining a relation 
between the amplitudes.  Also, the second boundary condition requires that the derivative 
of the wavefunction must be continuous, since we do not have an infinite jump in potential 
at this point.   Applying this second boundary condition at the point “x = +L”, we find a 
second relation between the unknown amplitudes.  Dividing these two equations, the 
unknown amplitudes “A” and “B” cancel out, yielding a relation between “k” and “l”.  Since 
“k” and “l” both depend on the energy “E”, this equation can be solved to find the possible 
energies of the particle in this finite square well.  You can find the details of this solution in 
the textbook.  Here’s a picture of the first few energy eigenfunctions of the infinite and 
finite potential well that result from this process.  These eigenfunctions have again been 
offset along the y-axis so you can more easily distinguish between them.  A fascinating 
difference is that for the finite potential well, the wavefunction doesn’t go to zero at the 
edge of the well, but transforms into a decaying exponential function which extends into the 
classically-forbidden region.  The boundary conditions ensure that the different pieces of 
the wavefunction tie continuously together, to form the overall wavefunction. 
 
[9] We’ll now consider another important solution of the Schrödinger equation for a case 
known as the harmonic oscillator.  A harmonic oscillator describes a particle moving in a 
quadratic potential as a function of distance from the origin at “x = 0”, just like a mass on a 
spring in classical physics. In classical physics, the mass would oscillate to and fro, executing 
simple harmonic motion with an angular frequency “omega” related to the spring constant, 
and an amplitude related to the energy of the particle.  This is also an important example in 
quantum mechanics, because it’s a good model of certain atomic situations. 
 
[10] When we solve for the wavefunction of a particle moving in a quadratic potential in 
quantum mechanics, there are some key differences compared to classical physics!  The 
particle does not have a definite location and may be found outside the classically-
permitted region.  Also, its energy is restricted to certain discrete eigenvalues.  These energy 
values can be found by solving the Schrödinger equation for the quantum harmonic 
oscillator, which we’ll now demonstrate.  The Schrödinger equation for this case includes 
the quadratic potential, as you can see on the slide.  It’s convenient to express this in terms 
of the angular frequency “omega” from the previous slide.  By solving this differential 
equation, we can find the energy eigenfunctions and eigenvalues for the harmonic 
oscillator.  The lowest energy eigenfunction actually has a Gaussian functional form, “e to 



the minus a times x squared”.  I can verify this form is a solution by substituting it in the 
equation, after which I’ll find that it has an energy value equal to one half, multiplied by h-
bar, multiplied by omega.  The substitution will also yield a value for the constant “a” inside 
the wavefunction.  If you wish you can pause the video and give this a try.  This Gaussian 
function turns out to be the energy eigenfunction with the lowest energy value, which is 
also known as the “ground state” of the harmonic oscillator. 
 
[11] How can we find the other energy eigenfunctions, with higher energies than the ground 
state?  One approach to this problem would be to carry out a general solution to the 
Schrödinger equation for the harmonic oscillator – this is a somewhat arduous exercise that 
you can find in the textbook!  However, there is a quicker approach which makes use of 
operators.  Here I’m going to introduce two new operators, “A plus” and “A minus”, which 
are called ladder operators for reasons we’ll soon see.  These ladder operators are 
combinations of the quantum mechanical position operator “x-hat” and the momentum 
operator “p-hat”, and by substituting in their known forms, I can find the expressions for 
these ladder operators shown on the slide.  Here, I’m using the same constant “a” I 
introduced on the previous slide, which helps parameterise the ground-state wavefunction. 
 
[12] Operators act on functions to produce other functions.  Let’s calculate the result of 
applying the “A-plus” operator to the ground-state energy eigenfunction, which I’ll call 
“psi_1”.  When I do this calculation, I find another wavefunction which I’ve called “psi_2”.  It 
turns out, which I can show by substitution in the Schrödinger equation, that “psi_2” is 
another energy eigenfunction of the Schrödinger equation, with energy eigenvalue “three 
halves h-bar omega”.  Similarly, I can show that if I apply the “A-minus” operator to “psi_2”, 
I’ll get back the ground-state eigenfunction “psi_1” – and also that “psi_1” and “psi_2” are 
orthogonal.  We learn from these calculations that when we apply the operator “A-plus” to 
an energy eigenfunction, we obtain the next eigenfunction of higher energy.  And when we 
apply the operator “A-minus” to an energy eigenfunction, we obtain the next eigenfunction 
of lower energy.  Hence “A-plus” and “A-minus” are called ladder operators, because they 
move up and down the ladder of energy states. 
 
[13] We’ve seen that the first two energy eigenvalues of the quantum harmonic oscillator 
are “one half h-bar omega”, and “three halves h-bar omega”.  In fact, all the energy 
eigenvalues of the harmonic oscillator are evenly spaced by intervals of “h-bar omega”, as 
you can see in the general formula listed on this slide and this gratuitous picture of a cat! 
 
[14] Let’s make a graph of the first few energy eigenfunctions of the quantum harmonic 
oscillator, as a function of the position coordinate, where the bottom of the potential well is 
located in the middle of each graph.  On the left-hand side we can see the wavefunction 
against position, and on the right-hand side the wavefunction has been squared to obtain 
the probability density against position.  The different rows of graphs show different energy 
states, starting from the ground state eigenfunction at the bottom, which we have already 
seen is a Gaussian function.  As we move up the energy states, the eigenfunctions alternate 
between even and odd functions of “x”, and become more “wiggly” as we add in new 
polynomial orders. 
 



[15] Here is a general proof that when the “A-plus” operator is applied to an energy 
eigenfunction, it always produces another eigenfunction of higher energy.  I won’t go 
through this proof in detail and you don’t need to memorize it, but I’ve included it in case 
you are curious whether the cases we’ve demonstrated on the previous slides hold more 
generally.  Please feel free to pause the video here if you’d like to check it in more detail. 
 
[16] In the final section of this video we’ll discuss unbound particles moving in one 
dimension, which means particles which can escape to infinity because their energy values 
exceed any potential step which might limit them.  We’ll first consider a particle which is 
completely free in space, moving in a region of space where the potential is zero.  The 
solution of the time-dependent Schrödinger equation in this case is a complex exponential 
function, which we can demonstrate by substituting this solution form into the Schrödinger 
equation.  The “e to the i k x” term in this wavefunction describes a wave travelling in the 
positive “x” direction.  If a particle was moving in the negative “x” direction instead, I would 
have to take the form “e to the minus i k x” instead.  I can understand this difference by 
noting that these complex exponentials are eigenfunctions of momentum, with positive and 
negative momentum values depending on the sign.  After substituting this wavefunction in 
the Schrödinger equation, I can also find relations between the energy of the particle and 
the values of “k” and “omega”.  This complex exponential wavefunction represents a wave – 
that is, a beam of particles with definite momentum, but no definite position. 
 
[17] How should we think about the normalisation of this wavefunction?  We normally aim 
to normalise a wavefunction by fixing the integral of the modulus squared of the 
wavefunction over all space to give a value of “1”.  However, we can see that for the free 
particle wavefunction represented by a complex exponential function, this integral actually 
gives us infinity!  So in this case, we have to think about normalisation in a different way.  
We’ll imagine that this wavefunction represents a beam of particles, not a single particle, 
and we’ll consider that the normalisation indicates the average separation of particles in the 
beam, which we can also think of as the intensity of the beam.  Here’s a picture of this 
situation in which particles are separated by a distance “L”, remembering that this is a 
classical representation of a function that is actually a wave!  After normalising the 
wavefunction over a range “L”, rather than over infinity, we deduce that the normalisation 
constant “N” is equal to “1 divided by the square root of L”.  Hence the intensity of the 
beam, which is proportional to the number of particles per unit length, is proportional to 
the modulus squared of this normalisation constant. 
 
[18] Let’s now use these free particle wavefunctions to study what happens when a beam of 
particles is incident on a potential step.  We’ll assume here that the energy of the particles 
exceeds the height of the step.  A certain fraction of the incident particles will be 
transmitted across the step and propagate to positive infinity, and a certain fraction of the 
particles will be reflected back from the step and propagate to negative infinity.  Our aim in 
this problem is to find these transmitted and reflected fractions.  The solution method is to 
split the wavefunction into three different terms: an incident, transmitted and reflected 
beam.  I can use the free particle wavefunction to write the forms of these different 
contributions.   First, the incident beam takes on the complex exponential form we 
discussed on the previous slides, where the “k” value is related to the energy.  The reflected 
beam takes on a similar form to this, where I’ve changed “plus k x” to “minus k x” because 



the beam is moving in the opposite direction, and I’ve also changed the normalisation 
constant from “I” to “R” because only a fraction of the beam is reflected, which we still need 
to determine.  Finally, for the transmitted beam, the variable “k” changes its value and I’ve 
called it “l”, since if I substitute in this transmitted solution to the Schrödinger equation in 
the region “x greater than 0” containing this potential function, I’ll find a relation for “l” in 
terms of both the energy and the potential “V_0”.  I’ve also included a different 
normalisation for the transmitted wavefunction, “capital T”. 
 
[19] How can I find the relations between these normalisation constants?  In the region of 
negative “x”, to the left of the potential step, the total wavefunction is a sum of the incident 
and reflected wavefunctions, which I’ve combined in the equation on the slide.  In the 
region of positive “x”, to the right of the potential step, the total wavefunction just consists 
of the transmitted particles.  We now apply the boundary conditions on the wavefunction at 
the join between these regions, at “x equals 0”.  Since the wavefunction must be continuous 
at this join, substituting “x equals 0” in the trial solutions, and cancelling the term involving 
time, produces the result that the incident coefficient plus the reflected coefficient must 
equal the transmitted coefficient.  However, this equation doesn’t give me enough 
information to separately solve for “R” and “T”.  The second condition comes from the fact 
that the derivative of the wavefunction must also be continuous at this join.  Differentiating 
the trial wavefunctions with respect to “x”, and again substituting “x equals 0” and 
cancelling out some terms, I obtain this second relation linking the different coefficients.  I 
now have two equations for two unknowns, which I can re-arrange to obtain the values of 
“R” and “T” in terms of the incident amplitude “I”.  In these equations I have also 
substituted in the relations for “k” and “l” in terms of the energy of the particle “E”, and the 
height of the potential step “V_0”.  You can see that these reflected and transmitted 
coefficients depend on the height of the step compared to the energy of the particle – for a 
low step the reflection coefficient reduces towards zero. 
 
[20] An interesting case occurs when a beam of particles is incident on a potential barrier 
which has a height greater than the energy of the particles.  Classically speaking, all the 
incident particles should reflect from this barrier and not be transmitted, since they don’t 
have enough energy to cross the barrier.  However, quantum mechanics says differently!  In 
a phenomenon known as quantum tunnelling, some particles can still reach beyond the 
barrier and propagate to plus infinity.  The key point is that the wavefunction inside the 
barrier region is not zero, but rather we can assume a trial wavefunction involving simple 
exponential functions, rather than complex exponential functions like for the incident beam.  
But the solution method is the same, and involves applying the boundary conditions at the 
two joins “x equals 0” and “x equals L”.  We’ll go through this case in more detail in the class 
activity. 
 
[21] I’ll end with a summary of this video.  We started by discussing square potential wells 
or bound particle states.  The energy eigenfunctions satisfy the time-independent 
Schrödinger equation, and we mentioned the key boundary conditions on the form of the 
wavefunction which must apply at any change in the potential value.  We also introduced 
the quantum harmonic oscillator and the ladder of resulting energy states separated by 
intervals of “h-bar omega”.  Ladder operators can be used to convert between the different 
energy eigenfunctions.  Finally, we discussed the wavefunction representation of a beam of 



free particles, and how boundary conditions can be used to determine the reflection and 
transmission coefficients of these beams at potential steps and barriers.  This ends our 
summary of the different applications of the Schrödinger equation in 1 dimension, and in 
the next video we’ll build on this by extending our discussion to the full 3 dimensional 
world! 


