Section 3: 1D Schrödinger Equation

In these slides we will cover:

- The time-independent Schrödinger equation
- Boundary and continuity conditions for $\psi(x)$
- Solutions for an infinite potential well
- Solutions for bound states of a finite potential well
- Solutions for a harmonic oscillator
- Ladder operators for the harmonic oscillator
- Representation of a free particle in 1 dimension
- Beams of particles incident on a potential step or barrier

Square potential wells

The time-independent Schrödinger equation

- We saw in the last Section that solutions to the Schrödinger equation for a particle moving in a 1D potential $V(x)$ are,

$$
\Psi(x, t)=\psi_{n}(x) e^{-i E_{n} t / \hbar}
$$

- Here, $\psi_{n}(x)$ are solutions to the time-independent Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{n}(x)}{d x^{2}}+V(x) \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

- This equation is just $\widehat{H} \psi_{n}=E_{n} \psi_{n}$ in terms of the Hamiltonian \widehat{H}, i.e. $\psi_{n}(x)$ are energy eigenfunctions with eigenvalues E_{n}

Square potential wells

Boundary and continuity conditions for ψ

- The solutions of a differential equation (such as the Schrödinger equation) always require boundary conditions
- For the Schrödinger equation, there are 2 boundary conditions:

1. The wavefunction ψ must be a continuous function - that is, include no sudden jumps - since it represents a probability
2. If ψ is continuous, then the Schrödinger equation implies that $\frac{d \psi}{d x}$ must also be continuous, except at an infinite jump in $V(x)$

Square potential wells

Infinite square well: eigenfunctions and eigenvalues

- The Schrödinger Equation for $|x|<L$, where $V=0$, is $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi$, which has solutions $\psi=N \sin k x$ or $\psi=N \cos k x$, where $k^{2}=2 m E / \hbar^{2}$
- Since $V=\infty$ for $|x|>L$ there is zero probability in this region so, since ψ is continuous, the wavefunctions must satisfy $\psi=0$ at $x= \pm L$
- Hence $k L=\frac{1}{2} n \pi$, where $n=1,3, \ldots$ (for $\cos k x$) or $n=2,4, \ldots$ (for $\sin k x$)
- Normalising, we find $\psi_{n}=\frac{1}{\sqrt{L}} \sin \left(\frac{n \pi x}{2 L}\right)$ with energy eigenvalues $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 m L^{2}}$

Square potential wells

Infinite square well: eigenfunctions and eigenvalues

- Here are the shapes of the energy eigenfunctions for the infinite potential well (Each one is offset along the y-axis for clarity)
- They are $\sin k x$ or $\cos k x$ functions, which always satisfy $\psi=0$ at the edges

Image credit:
https://opentextbc.ca/universityphysic sv3openstax/chapter/the-quantum-particle-in-a-box/

Square potential wells

Bound states of a finite square well

- Now let's consider a particle with energy E in a finite square potential well of depth V_{0} (where $E<V_{0}$), which looks like:

- Classically speaking, the particle would not cross into $|x|>L$, since $E<V_{0}$. However, this is not true in Quantum Mechanics - particles can appear in the forbidden region!

Square potential wells

Bound states of a finite square well

- We can determine the wavefunction by solving the Schrödinger equation and applying the boundary conditions

In the region $|x|<L$:

- $V=0$, so $\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+E \psi=0$
- Solutions are $\psi=A \cos k x$ or $\psi=A \sin k x$
- $k^{2}=2 m E / \hbar^{2}$
- There is hence a family of even solutions (symmetric in x, $\cos k x$) and odd solutions (antisymmetric in $x, \sin k x$)

In the region $|x|>L$:

- $V=V_{0}$, so $\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}-\left(V_{0}-E\right) \psi=0$ (note the sign change compared to $|x|<L$, since $V_{0}>E$)
- Solutions are $\psi=A e^{l x}$ or $\psi=A e^{-l x}$
- $l^{2}=2 m\left(V_{0}-E\right) / \hbar^{2}$
- Since $\psi \rightarrow 0$ as $x \rightarrow \pm \infty$ if ψ tells us probability, we need $\psi \propto e^{-l x}$ for $x>L$ and $\psi \propto e^{l x}$ for $x<-L$

Square potential wells

Bound states of a finite square well

- We can determine the wavefunction by solving the Schrödinger equation and applying the boundary conditions

Comparing the lowest energy eigenfunctions of the infinite potential well and finite potential well (Image credit: http://hyperphysics.phy-astr.gsu.edu)

- For example, the even solutions:
$\psi_{A}(x)=A \cos k x$ for $|x|<L$ and $\psi_{B}(x)=B e^{-l x}$ for $x>L$
- ψ is continuous at $x=L \rightarrow \psi_{A}(L)=$ $\psi_{B}(L) \rightarrow A \cos k L=B e^{-l L}$
- $\frac{d \psi}{d x}$ is continuous at $x=L \rightarrow$
$\frac{d \psi_{A}}{d x}(L)=\frac{d \psi_{B}}{d x}(L) \rightarrow$
$k A \sin k L=l B e^{-l L}$
- Combining these $\rightarrow k \tan k L=l$ from which we can find the energy

The harmonic oscillator

Definition of the harmonic oscillator

- The harmonic oscillator is a particle moving in a 1D potential $V(x)=\frac{1}{2} k x^{2}$ - classically, this is like a mass on a spring

- Classically, a particle would oscillate to-and-fro with "simple harmonic motion" $x(t)=A \cos \omega t$, where $\omega^{2}=k / m$, and its motion would be restricted to $|x|<A$, where $A=\sqrt{2 E / k}$

The harmonic oscillator

The Schrödinger equation for the harmonic oscillator

- In Quantum Mechanics, the particle does not have a definitive location, it can be found outside the classically-permitted region, and its energy is restricted to discrete values!
- The energy eigenfunctions $\psi(x)$ of the particle satisfy the time-independent Schrödinger equation (using $\omega^{2}=k / m$):

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)
$$

- By simple substitution we find that $\psi_{1}(x) \propto e^{-a x^{2}}$ is a solution of this equation with energy $E_{1}=\frac{1}{2} \hbar \omega$, where $a=m \omega / 2 \hbar$. This is actually the ground state (lowest energy state)

The harmonic oscillator

Ladder operators for the harmonic oscillator

- A cunning method of finding the other energy eigenfunctions, whilst using the concept of operators from the previous Section, is to introduce the ladder operators \hat{A}_{+}and \hat{A}_{-}:

$$
\begin{aligned}
& \hat{A}_{+}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}-\frac{i}{\sqrt{2 m w \hbar}} \hat{p}=\sqrt{a} x-\frac{1}{2 \sqrt{a}} \frac{d}{d x} \\
& \hat{A}_{-}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}+\frac{i}{\sqrt{2 m \omega \hbar}} \hat{p}=\sqrt{a} x+\frac{1}{2 \sqrt{a}} \frac{d}{d x}
\end{aligned}
$$

- In the above equations, $\hat{x}=x$ and $\hat{p}=-i \hbar \frac{d}{d x}$ are the usual operators for position and momentum, and we have used the constant $a=m \omega / 2 \hbar$ from the previous slide

The harmonic oscillator

Ladder operators for the harmonic oscillator

- For example, the result of applying the operator \hat{A}_{+}on a function $f(x)$ is the new function $\hat{A}_{+} f=\sqrt{a} x f-\frac{1}{2 \sqrt{a}} \frac{d f}{d x}$
- Again by substitution, we find that the function $\psi_{2}(x)=$ $\hat{A}_{+} \psi_{1}(x) \propto x e^{-a x^{2}}$ is also a solution of the Schrödinger equation for the harmonic oscillator, with energy $E_{2}=\frac{3}{2} \hbar \omega$
- You can show that $\psi_{1}(x) \propto \hat{A}_{-} \psi_{2}(x)$ and $\int_{-\infty}^{\infty} \psi_{1}^{*} \psi_{2} d x=0$
- The operator \hat{A}_{+}creates energy eigenfunctions of higher energy, and \hat{A}_{-}creates eigenfunctions of lower energy - we are moving up and down the "ladder" of energy states

The harmonic oscillator

Ladder operators for the harmonic oscillator

- The energy levels of the harmonic oscillator are given by $E_{n}=\left(n-\frac{1}{2}\right) \hbar \omega$ where $n=1,2,3, \ldots$
- Here is an illustration of the ladder of states including another gratituous picture of a cat:

Image credit:
https://www.lessthanepsilon.net/second -quantization/

The harmonic oscillator

Harmonic oscillator summary

- Here's a representation of the first few energy eigenfunctions:

Again, the energy eigenfunctions are alternating even (symmetric) functions and odd (anti-symmetric) functions of x

Image credit: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html

The harmonic oscillator

Commutation relations and energy levels

- Non-examinable: We can use some operator relations to prove the general result that $\hat{A}_{+} \psi$ is the eigenfunction of the next energy level up. We start with some useful relations we can show using the forms of \hat{A}_{+}and \hat{A}_{-}:

$$
\widehat{H}=\hbar \omega\left(\hat{A}_{+} \hat{A}_{-}+\frac{1}{2}\right) \quad\left[\hat{A}_{-}, \hat{A}_{+}\right]=1
$$

- This then enables us to find (using $[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}$)

$$
\left[\hat{H}, \hat{A}_{+}\right]=\hbar \omega\left[\hat{A}_{+} \hat{A}_{-}, \hat{A}_{+}\right]=\hbar \omega\left[\hat{A}_{-}, \hat{A}_{+}\right] \hat{A}_{+}=\hbar \omega \hat{A}_{+}
$$

- If ψ is an energy eigenfunction ($\widehat{H} \psi=E \psi$), let's then consider

$$
\widehat{H}\left(\hat{A}_{+} \psi\right)=\left[\widehat{H}, \hat{A}_{+}\right] \psi+\hat{A}_{+} \widehat{H} \psi=\hbar \omega \hat{A}_{+} \psi+E \hat{A}_{+} \psi=(E+\hbar \omega) \hat{A}_{+} \psi
$$

- Hence, $\hat{A}_{+} \psi$ is an energy eigenfunction with energy $E+\hbar \omega$, proving our initial statement

Unbound particles in 1D

Representation of a free particle

- We now consider 1D unbound problems, where "unbound" means that particles are able to escape to infinity
- We first note that a solution of the time-dependent Schrödinger equation for a "free particle" (in a region where $V(x)=0$) is
$e^{i k x}$ implies a wave travelling in
the $+x$ direction $-e^{-i k x}$ would
be travelling towards $-x$
- (This satisfies $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=i \hbar \frac{\partial \Psi}{\partial t}$ where $k^{2}=\frac{2 m E}{\hbar^{2}}$ and $\omega=\frac{E}{\hbar}$)
- This function represents a wave - that is, a beam of particles with definite momentum, but no definite position

Unbound particles in 1D

Representation of a free particle

- How should we normalise the free-particle wavefunction $\Psi(x, t)=N e^{i(k x-\omega t)}$? We can see that, $\int_{-\infty}^{\infty}|\Psi|^{2} d x=\infty!$
- The normalisation N indicates the "average separation of particles in the beam" or the "intensity of the beam"
- In a classical picture ...

- If $N=\frac{1}{\sqrt{L}}$, then we find 1 particle per distance L. Since the intensity of the beam is $\propto \frac{1}{L}$, then intensity $\propto|N|^{2}$

Unbound particles in 1D

Particles incident on a potential step

- We can use the free particle wavefunction to describe a beam of particles (with energy $E>V_{0}$) incident on a potential step:

- We can assume the following forms for the solution:
Incident beam:

$$
\begin{array}{rlrl}
\Psi_{I}(x, t) & =I e^{i(k x-\omega t)} & k^{2}=\frac{2 m E}{\hbar^{2}} \\
\Psi_{R}(x, t) & =R e^{i(-k x-\omega t)} & & 2 m\left(E-V_{0}\right) \\
\Psi_{T}(x, t) & =T e^{i(l x-\omega t)} & l^{2}=\frac{2 m\left(\hbar^{2}\right.}{\hbar^{2}}
\end{array}
$$

Reflected beam:
Transmitted beam:

Unbound particles in 1D

Particles incident on a potential step

- The general form of the wavefunctions are then, Region $x<0: \quad \Psi_{1}(x, t)=\Psi_{I}+\Psi_{R}=\left(I e^{i k x}+R e^{-i k x}\right) e^{-i \omega t}$ Region $x>0: \quad \Psi_{2}(x, t)=\Psi_{T}=T e^{i l x} e^{-i \omega t}$
- We now apply the two boundary conditions at $x=0$:
Ψ is continuous at $x=0 \Rightarrow \Psi_{1}(0, t)=\Psi_{2}(0, t) \Rightarrow I+R=T$
$\frac{\partial \Psi}{\partial x}$ is continuous at $x=0 \Longrightarrow \frac{\partial \Psi_{1}}{\partial x}(0, t)=\frac{\partial \Psi_{2}}{\partial x}(0, t) \Longrightarrow k I-k R=l T$
- Re-arranging, we obtain the reflected/transmitted amplitudes:

$$
\frac{T}{I}=\frac{2}{1+\sqrt{1-V_{0} / E}} \quad \frac{R}{I}=\frac{1-\sqrt{1-V_{0} / E}}{1+\sqrt{1-V_{0} / E}}
$$

Unbound particles in 1D

Quantum tunnelling

- If we apply these methods to a potential barrier $\left(V_{0}>E\right)$ we will find quantum tunnelling - some particles reach $x>L$!

Since $E<V_{0}$, note that the general solution to the Schrödinger equation in the barrier region is $\Psi(x, t)=\left(A e^{l x}+B e^{-l x}\right) e^{-i \omega t}$, not $\Psi(x, t)=\left(A e^{i l x}+B e^{-i l x}\right) e^{-i \omega t}$ - one way to see that is to notice that $l^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}$ (2 slides ago) is negative when $E<V_{0}$

Summary

Square potential wells

The harmonic oscillator

- Energy eigenfunctions always satisfy the time-independent Schrödinger equation, $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)$
- $\psi(x)$ is continuous everywhere, and $\frac{d \psi}{d x}$ is continuous except where there is an infinite jump in $V(x)$
- Bound solutions for potential wells are $\psi(x) \propto{ }_{\cos }^{\sin }(k x)$
- Particles can be found in classically forbidden regions
- Solutions for the harmonic oscillator potential $V(x)=$ $\frac{1}{2} k x^{2}$ are $\psi(x) \propto($ polynomial in $x) \cdot e^{-a x^{2}}$
- Energy levels are quantised as $E_{n}=\left(n-\frac{1}{2}\right) \hbar \omega$
- Ladder operators \hat{A}_{+}and \hat{A}_{-}transform between states

Unbound particles in 1D

- A free particle beam is described by $\Psi(x, t)=N e^{i(k x-\omega t)}$, where the intensity of the beam is proportional to $|N|^{2}$
- Continuity conditions can be used to determine reflection and transmission coefficients at potential steps/barriers

