
Section	3:	1D	Schrödinger	Equation

In	these	slides	we	will	cover:

• The	time-independent	Schrödinger	equation

• Boundary	and	continuity	conditions	for	𝜓(𝑥)

• Solutions	for	an	infinite	potential	well

• Solutions	for	bound	states	of	a	finite	potential	well

• Solutions	for	a	harmonic	oscillator

• Ladder	operators	for	the	harmonic	oscillator

• Representation	of	a	free	particle	in	1	dimension

• Beams	of	particles	incident	on	a	potential	step	or	barrier



Square	potential	wells

The	time-independent	Schrödinger	equation

• We	saw	in	the	last	Section	that	solutions	to	the	Schrödinger	
equation	for	a	particle	moving	in	a	1D	potential	𝑉 𝑥 are,

• Here,	𝜓&(𝑥) are	solutions	to	the	time-independent	
Schrödinger	equation:

• This	equation	is	just	𝐻(𝜓& = 𝐸&𝜓& in	terms	of	the	Hamiltonian	
𝐻(,	i.e.	𝜓&(𝑥) are	energy	eigenfunctions with	eigenvalues	𝐸&

Ψ 𝑥, 𝑡 = 𝜓& 𝑥 	𝑒01234/ℏ

−
ℏ8

2𝑚	
𝑑8𝜓& 𝑥
𝑑𝑥8 + 𝑉 𝑥 	𝜓& 𝑥 = 𝐸&	𝜓&(𝑥)



Square	potential	wells

Boundary	and	continuity	conditions	for	𝝍

• The	solutions	of	a	differential	
equation	(such	as	the	Schrödinger	
equation)	always	require	
boundary	conditions

• For	the	Schrödinger	equation,	
there	are	2	boundary	conditions:

1. The	wavefunction𝝍must	be	a	continuous	function	– that	is,	
include	no	sudden	jumps	– since	it	represents	a	probability

2. If	𝜓 is	continuous,	then	the	Schrödinger	equation	implies	that	
𝒅𝝍
𝒅𝒙

must	also	be	continuous,	except	at	an	infinite	jump	in	𝑉(𝑥)



Square	potential	wells

Infinite	square	well:	eigenfunctions and	eigenvalues

• The	classical	example	of	a	
potential	well	is	the	infinite	
square	well you	have	met	
before.		Let’s	recap	it	… 𝑥

𝑉(𝑥)

0−𝐿 +𝐿

• The	Schrödinger	Equation	for	 𝑥 < 𝐿,	where	𝑉 = 0,	is	− ℏC

8D
	E

CF
EGC

= 𝐸	𝜓,	
which	has	solutions	𝜓 = 𝑁 sin 𝑘𝑥 or	𝜓 = 𝑁 cos 𝑘𝑥, where	𝑘8 = 2𝑚𝐸/ℏ8

• Since	𝑉 = ∞ for	 𝑥 > 𝐿 there	is	zero	probability	in	this	region	so,	since	𝜓 is	
continuous,	the	wavefunctions must	satisfy	𝜓 = 0 at	𝑥 = ±𝐿

• Hence	𝑘𝐿 = R
8
𝑛𝜋,	where	𝑛 = 1,3, … (for	cos 𝑘𝑥)	or	𝑛 = 2,4, … (for	sin 𝑘𝑥)

• Normalising,	we	find	𝜓& = R
Y�
cos
sin

&[G
8Y

with	energy	eigenvalues	𝐸& =
&C[CℏC

\DYC

𝑉 = ∞𝑉 = ∞

𝑉 = 0



Square	potential	wells

Infinite	square	well:	eigenfunctions and	eigenvalues

• Here	are	the	shapes	of	the	
energy	eigenfunctions for	
the	infinite	potential	well		
(Each	one	is	offset	along	
the	𝑦-axis	for	clarity)

• They	are	sin 𝑘𝑥 or	cos 𝑘𝑥
functions,	which	always	
satisfy	𝜓 = 0 at	the	edges

Image	credit:	
https://opentextbc.ca/universityphysic
sv3openstax/chapter/the-quantum-
particle-in-a-box/



Square	potential	wells

Bound	states	of	a	finite	square	well

• Now	let’s	consider	a	particle	with	energy	𝐸 in	a	finite	square	
potential	well	of	depth	𝑉 (where	𝐸 < 𝑉 ),	which	looks	like:

• Classically	speaking,	the	particle	would	not	cross	into	 𝑥 > 𝐿,	
since	𝐸 < 𝑉 .		However,	this	is	not	true	in	Quantum	Mechanics	
– particles	can	appear	in	the	forbidden	region!

𝑥

𝑉(𝑥)

0−𝐿 +𝐿

𝑉A	“bound	state”	
means	that	the	
energy	of	particle	
satisfies	𝐸 < 𝑉_



Square	potential	wells

Bound	states	of	a	finite	square	well

• We	can	determine	the	wavefunction by	solving	the	
Schrödinger	equation and	applying	the	boundary	conditions

In	the	region	 𝑥 < 𝐿:

• 𝑉 = 0,	so	 ℏ
C

8D
ECF
EGC

+ 𝐸𝜓 = 0

• Solutions	are	𝜓 = 𝐴 cos 𝑘𝑥 or	
𝜓 = 𝐴 sin 𝑘𝑥

• 𝑘8 = 2𝑚𝐸/ℏ8

• There	is	hence	a	family	of	even	
solutions (symmetric	in	𝑥,	
cos 𝑘𝑥)	and	odd	solutions	(anti-
symmetric	in	𝑥,	sin 𝑘𝑥)

In	the	region	 𝑥 > 𝐿:

• 𝑉 = 𝑉 ,	so	 ℏ
C

8D
ECF
EGC

− (𝑉 − 𝐸)𝜓 = 0
(note	the	sign	change	compared	to	
𝑥 < 𝐿,	since	𝑉 > 𝐸)

• Solutions	are	𝜓 = 𝐴𝑒aG or	𝜓 = 𝐴𝑒0aG

• 𝑙8 = 2𝑚(𝑉 − 𝐸)/ℏ8

• Since	𝜓 → 0 as	𝑥 → ±∞ if	𝜓 tells	us	
probability,	we	need	𝜓 ∝ 𝑒0aG for	
𝑥 > 𝐿 and	𝜓 ∝ 𝑒aG for	𝑥 < −𝐿



Square	potential	wells

Bound	states	of	a	finite	square	well

• We	can	determine	the	wavefunction by	solving	the	
Schrödinger	equation and	applying	the	boundary	conditions

Comparing	the	lowest	energy	eigenfunctions of	the	
infinite	potential	well	and	finite	potential	well	
(Image	credit:	http://hyperphysics.phy-astr.gsu.edu)

𝑉 • For	example,	the	even	solutions:	
𝜓e(𝑥) = 𝐴 cos 𝑘𝑥 for	 𝑥 < 𝐿 and	
𝜓f(𝑥) = 𝐵𝑒0aG for	𝑥 > 𝐿

• 𝜓 is	continuous	at	𝑥 = 𝐿 → 𝜓e(𝐿) =
𝜓f(𝐿) → 𝐴 cos 𝑘𝐿 = 𝐵𝑒0aY

• EF
EG

is	continuous	at	𝑥 = 𝐿 →
EFh
EG

𝐿 = EFi
EG

𝐿 →
𝑘𝐴 sin 𝑘𝐿 = 𝑙𝐵𝑒0aY

• Combining	these	→ 𝑘 tan 𝑘𝐿 = 𝑙
from	which	we	can	find	the	energy



The	harmonic	oscillator

Definition	of	the	harmonic	oscillator

• The	harmonic	oscillator	is	a	particle	moving	in	a	1D	potential	
𝑉 𝑥 = R

8
𝑘𝑥8 – classically,	this	is	like	a	mass	on	a	spring

• Classically,	a	particle	would	oscillate	to-and-fro	with	“simple	
harmonic	motion” 𝑥 𝑡 = 𝐴 cos𝜔𝑡,	where	𝜔8 = 𝑘/𝑚,	and	its	
motion	would	be	restricted	to	 𝑥 < 𝐴,	where	𝐴 = 2𝐸/𝑘�

𝑉(𝑥)

𝑥

𝑚



The	harmonic	oscillator

The	Schrödinger	equation	for	the	harmonic	oscillator

• In	Quantum	Mechanics,	the	particle	does	not	have	a	definitive	
location,	it	can	be	found	outside	the	classically-permitted	
region,	and	its	energy	is	restricted	to	discrete	values!

• The	energy	eigenfunctions 𝜓(𝑥) of	the	particle	satisfy	the	
time-independent	Schrödinger	equation	(using	𝜔8 = 𝑘/𝑚):

• By	simple	substitution	we	find	that	𝜓R(𝑥) ∝ 𝑒0mG
C is	a	solution	

of	this	equation	with	energy	𝐸R =
R
8
ℏ𝜔,	where	𝑎 = 𝑚𝜔/2ℏ.		

This	is	actually	the	ground	state	(lowest	energy	state)

−
ℏ8

2𝑚	
𝑑8𝜓 𝑥
𝑑𝑥8 +

1
2𝑚𝜔

8𝑥8	𝜓 𝑥 = 𝐸	𝜓(𝑥)



The	harmonic	oscillator

Ladder	operators	for	the	harmonic	oscillator

• A	cunning	method	of	finding	the	other	energy	eigenfunctions,	
whilst	using	the	concept	of	operators	from	the	previous	
Section,	is	to	introduce	the	ladder	operators	𝐴op and	𝐴o0:

• In	the	above	equations,	𝑥q = 𝑥 and	�̂� = −𝑖ℏ E
EG

are	the	usual	
operators	for	position	and	momentum,	and	we	have	used	the	
constant	𝑎 = 𝑚𝜔/2ℏ	from	the	previous	slide

𝐴op =
𝑚𝜔
2ℏ

�
𝑥q −

𝑖
2𝑚𝑤ℏ� �̂� = 𝑎� 	𝑥 −

1
2 𝑎�

	
𝑑
𝑑𝑥

𝐴o0 =
𝑚𝜔
2ℏ

�
𝑥q +

𝑖
2𝑚𝑤ℏ� �̂� = 𝑎� 	𝑥 +

1
2 𝑎�

	
𝑑
𝑑𝑥



The	harmonic	oscillator

Ladder	operators	for	the	harmonic	oscillator

• For	example,	the	result	of	applying	the	operator	𝐴op on	a	
function	𝑓(𝑥) is	the	new	function	𝐴op𝑓 = 𝑎� 𝑥𝑓 − R

8 m�
Ew
EG

• Again	by	substitution,	we	find	that	the	function	𝜓8 𝑥 =
𝐴op𝜓R 𝑥 ∝ 𝑥	𝑒0mGC is	also	a	solution	of	the	Schrödinger	
equation	for	the	harmonic	oscillator,	with	energy	𝐸8 =

x
8
ℏ𝜔

• You	can	show	that	𝜓R(𝑥) ∝ 𝐴o0𝜓8(𝑥) and	∫ 𝜓R∗	𝜓8	𝑑𝑥 = 0{
0{

• The	operator	𝐴op creates	energy	eigenfunctions of	higher	
energy,	and	𝐴o0 creates	eigenfunctions of	lower	energy	– we	
are	moving	up	and	down	the	“ladder”	of	energy	states



The	harmonic	oscillator

Ladder	operators	for	the	harmonic	oscillator

• The	energy	levels	of	the	
harmonic	oscillator	are	
given	by	𝐸& = 𝑛 − R

8
ℏ𝜔

where	𝑛 = 1,2,3, …

• Here	is	an	illustration	of	the	
ladder	of	states	including	
another	gratituous picture	
of	a	cat:

Image	credit:	
https://www.lessthanepsilon.net/second
-quantization/



The	harmonic	oscillator

Harmonic	oscillator	summary

• Here’s	a	representation	of	the	first	few	energy	eigenfunctions:

Image	credit:	http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html

Again,	the	energy	
eigenfunctions are	
alternating	even	
(symmetric)	
functions	and	odd	
(anti-symmetric)	
functions	of	𝑥



The	harmonic	oscillator

Commutation	relations	and energy	levels

• Non-examinable: We	can	use	some	operator	relations	to	prove	the	general	
result	that	𝐴op𝜓 is	the	eigenfunction of	the	next	energy	level	up.		We	start	
with	some	useful	relations	we	can	show	using	the	forms	of	𝐴op and	𝐴o0:

• This	then	enables	us	to	find	(using	 𝐴o𝐵|, 𝐶o = 𝐴o 𝐵|, 𝐶o + 𝐴o, 𝐶o 𝐵| )

• If	𝜓 is	an	energy	eigenfunction (𝐻(𝜓 = 𝐸𝜓),	let’s	then	consider

• Hence,	𝐴op𝜓 is	an	energy	eigenfunction with	energy	𝐸 + ℏ𝜔,	proving	our	
initial	statement

𝐻( = ℏ𝜔 𝐴op𝐴o0 +
1
2 𝐴o0, 𝐴op = 1

𝐻( 𝐴op𝜓 = 𝐻(, 𝐴op 𝜓 + 𝐴op𝐻(𝜓 = ℏ𝜔𝐴op𝜓 + 𝐸𝐴op𝜓 = 𝐸 + ℏ𝜔 𝐴op𝜓

𝐻(, 𝐴op = ℏ𝜔 𝐴op𝐴o0, 𝐴op = ℏ𝜔 𝐴o0, 𝐴op 𝐴op = ℏ𝜔𝐴op



Unbound	particles	in	1D

Representation	of	a	free	particle

• We	now	consider	1D	unbound	problems,	where	“unbound”	
means	that	particles	are	able	to	escape	to	infinity

• We	first	note	that	a	solution	of	the	time-dependent	
Schrödinger	equation	for	a	“free	particle”	(in	a	region	where	
𝑉 𝑥 = 0)	is

• (This	satisfies	− ℏC

8D
~C�
~GC

= 𝑖ℏ ~�
~4

where	𝑘8 = 8D2
ℏC

and	𝜔 = 2
ℏ
)

• This	function	represents	a	wave	– that	is,	a	beam	of	particles	
with	definite	momentum,	but	no	definite	position

Ψ 𝑥, 𝑡 = 𝑒1(�G0�4)
𝑒1�G implies	a	wave	travelling	in	
the	+𝑥 direction	– 𝑒01�G would	

be	travelling	towards	−𝑥



Unbound	particles	in	1D

Representation	of	a	free	particle

• How	should	we	normalise	the	free-particle	wavefunction
Ψ 𝑥, 𝑡 = 𝑁𝑒1(�G0�4)?		We	can	see	that,	∫ Ψ 8	𝑑𝑥 = ∞{

0{ !

• The	normalisation	𝑁 indicates	the	“average	separation	of	
particles	in	the	beam”	or	the	“intensity	of	the	beam”

• In	a	classical	picture	…

• If	𝑁 = R
Y�
,	then	we	find	1	particle	per	distance	𝐿.		Since	the	

intensity	of	the	beam	is	∝ R
Y
,	then	intensity	∝ 𝑵 𝟐

𝐿



Unbound	particles	in	1D

Particles	incident	on	a	potential	step

• We	can	use	the	free	particle	wavefunction to	describe	a	beam	
of	particles	(with	energy	𝐸 > 𝑉 )	incident	on	a	potential	step:

• We	can	assume	the	following	forms	for	the	solution:

𝑉

𝑥

𝑉(𝑥)
Incident	Ψ�

Reflected	Ψ�

Transmitted	Ψ�

Ψ� 𝑥, 𝑡 = 𝐼	𝑒1 �G0�4

Ψ� 𝑥, 𝑡 = 𝑅	𝑒1 0�G0�4

Ψ� 𝑥, 𝑡 = 𝑇	𝑒1 aG0�4

Incident	beam:
Reflected	beam:
Transmitted	beam:

𝑘8 =
2𝑚𝐸
ℏ8

𝑙8 =
2𝑚 𝐸 − 𝑉

ℏ8



Unbound	particles	in	1D

Particles	incident	on	a	potential	step

• The	general	form	of	the	wavefunctions are	then,

• We	now	apply	the	two	boundary	conditions	at	𝑥 = 0:

• Re-arranging,	we	obtain	the	reflected/transmitted	amplitudes:

ΨR 𝑥, 𝑡 = Ψ� + Ψ� = 𝐼	𝑒1�G + 𝑅	𝑒01�G 	𝑒01�4Region	𝑥 < 0:
Ψ8 𝑥, 𝑡 = Ψ� = 𝑇	𝑒1aG	𝑒01�4Region	𝑥 > 0:

Ψ is	continuous	at	𝑥 = 0 ⟹ ΨR 0, 𝑡 = Ψ8 0, 𝑡 ⟹ 𝐼 + 𝑅 = 𝑇

~�
~G

is	continuous	at	𝑥 = 0 ⟹ ~��
~G

0, 𝑡 = ~�C
~G

0, 𝑡 ⟹ 𝑘𝐼 − 𝑘𝑅 = 𝑙𝑇

𝑇
𝐼 =

2
1 + 1 − 𝑉 /𝐸�

𝑅
𝐼 =

1 − 1 − 𝑉 /𝐸�

1 + 1 − 𝑉 /𝐸�



Unbound	particles	in	1D

Quantum	tunnelling

• If	we	apply	these	methods	to	a	potential	barrier	(𝑉 > 𝐸)	we	
will	find	quantum	tunnelling	– some	particles	reach	𝑥 > 𝐿!

𝑉

𝑥

𝑉(𝑥)

0 𝐿

Particle	beam	approaching	
with	energy	𝐸 < 𝑉

Classically,	no	particles	
would	reach	here!	

Quantum	Mechanics	
says	differently	…

Since	𝐸 < 𝑉 ,	note	that	the	general	solution	to	the	Schrödinger	
equation	in	the	barrier	region	is	Ψ 𝑥, 𝑡 = 𝐴𝑒aG + 𝐵𝑒0aG 𝑒01�4,	
notΨ 𝑥, 𝑡 = 𝐴𝑒1aG + 𝐵𝑒01aG 𝑒01�4 – one	way	to	see	that	is	to	
notice	that	𝑙8 = 8D 20��

ℏC
(2	slides	ago)	is	negative when	𝐸 < 𝑉



Summary

Unbound	particles	
in	1D

The	harmonic	
oscillator

• A	free	particle	beam	is	described	by	Ψ 𝑥, 𝑡 = 𝑁𝑒1(�G0�4),	
where	the	intensity	of	the	beam	is	proportional	to	 𝑁 8

• Continuity	conditions	can	be	used	to	determine	reflection	
and	transmission	coefficients	at	potential	steps/barriers

• Solutions	for	the	harmonic	oscillator	potential	𝑉 𝑥 =
R
8
𝑘𝑥8 are	𝜓 𝑥 ∝ polynomial	in	𝑥 � 𝑒0mGC

• Energy	levels	are	quantised as	𝐸& = 𝑛 − R
8
ℏ𝜔

• Ladder	operators	𝐴op and	𝐴o0 transform	between	states

• Energy	eigenfunctions always	satisfy	the	time-independent	

Schrödinger	equation,− ℏC

8D
ECF G
EGC

+ 𝑉 𝑥 𝜓 𝑥 = 𝐸𝜓(𝑥)

• 𝜓(𝑥) is	continuous	everywhere,	and	EF
EG

is	continuous	
except	where	there	is	an	infinite	jump	in	𝑉(𝑥)

• Bound	solutions	for	potential	wells	are	𝜓(𝑥) ∝ sin
cos 𝑘𝑥

• Particles	can	be	found	in	classically	forbidden	regions

Square	potential	
wells


