
Transcript for Video 2: How QM Works, Part 2 
 
[1] Welcome everyone to our second video about quantum mechanics!  This video is the 
concluding part of our summary of how quantum mechanics works, in which we’re going 
over the basic principles, mathematics and structure of quantum mechanics.  In this video 
we’ll meet the operators corresponding to some different measurable quantities.  We’re 
also going to discuss the uncertainty principle, and what it means when two observables can 
be simultaneously known.  Finally, we’ll talk about how a wavefunction evolves forward in 
time. 
 
[2] This first slide provides a quick recap of the measurement process in quantum 
mechanics, which we discussed in detail in the first video.  The state of a particle is 
described by a wavefunction.  Let’s say we want to measure a particular observable 
quantity, such as position, momentum or energy.  This observable has a corresponding 
operator, which possesses a set of eigenfunctions and eigenvalues.  It’s always possible to 
express the wavefunction of the particle as a linear combination of those eigenfunctions, 
and the possible results of the measurement are the corresponding eigenvalues of the 
operator.  We don’t know which eigenvalue will result, but we do know the probabilities of 
each result, which are determined by the coefficients of the eigenfunction expansion.  Once 
we perform the measurement, obtaining one of the eigenvalues as the result, the 
wavefunction collapses to the corresponding eigenfunction.  So, this is the way in which the 
world works in quantum mechanics! 
 
[3] Now let’s introduce some key observables and their associated operators.  We’ll 
consider the momentum, position and energy of a particle, which are all key physical 
properties.  We’ll go through which operators represent these quantities, and what this 
implies for their possible eigenvalues and eigenfunctions.  And don’t forget that 
mathematically, an operator is a mathematical instruction which acts on a function, to 
produce another function. 
 
[4] Let’s start with momentum.  I’ll state here the momentum operator for a particle moving 
in one dimension.  This operator, which I’ll write as “p” for momentum with a hat on top, 
differentiates a function with respect to “x”, and multiplies the result by “minus i h-bar”.  
The “i” that appears here is again the square root of minus 1, that is, an imaginary number.  
However, remember that the wavefunction in general can be complex, so that “i” can help 
ensure that our eigenvalues are real numbers.  We can identify the eigenfunctions of this 
operator by using a trial solution.  If we try an eigenfunction of the form shown on the slide, 
“e to the i p x on h-bar”, and apply the operator for momentum, we’ll end up with the same 
function multiplied by “p”.   You can try this out if you wish!  Hence, this function is an 
eigenfunction of the momentum operator, with eigenvalue “p”. 
 
[5] How does this help us figure out, when we’ve given a wavefunction, which momentum 
values can be measured, with what probabilities?  To answer this question we need to apply 
the quantum mechanics rules we’ve been discussing.  The particle has a wavefunction, and 
we need to express that wavefunction as a sum over the eigenfunctions of momentum, 
weighted by some coefficients.  This is always possible to do, since the eigenfunctions of an 
operator may be combined to construct any function.  The momentum values appearing in 



this expansion tell us which values can be measured from the wavefunction, and the 
modulus squared of the coefficients tell us the probabilities of obtaining each value.   We 
need to remember to take the modulus squared, since those coefficients can be complex 
numbers in general, and the modulus squared produces a real number like a probability. 
 
[6] Let’s see an example of this process in action.  We’ll think about a particle which is in the 
ground energy state of an infinite potential well over the range “x = -L” to “x = +L”, which 
has a wavefunction of the cosine form.  If we look at this wavefunction, we can understand 
the “1 divided by the square root of L” term as normalising the wavefunction, to ensure its 
modulus-squared integrates to 1 over the range of the well.  And the cosine function peaks 
at “x = 0”, and reaches zero at the two edges of the well.  To understand which momentum 
values can be measured for this particle, we need to express the wavefunction as a sum of 
momentum eigenfunctions – which are the complex exponential functions we met on the 
previous slide.  There’s some useful maths which we can use to convert between sines and 
cosines and complex exponentials.  Applying this maths identity, we can transform the 
cosine wavefunction into a sum of two complex exponential functions.  We can identify 
each of these two complex exponentials with a momentum value – by comparison with the 
form of the momentum eigenfunction, we can see that these momentum values are “plus 
or minus pi h-bar divided by 2 L”.  Hence, when we measure the momentum of a particle in 
this particular wavefunction we can obtain two values, which are equal and opposite: the 
particle’s momentum can be directed to the left or to the right of the well. 
 
[7] Now let’s consider the operator for the position of a particle.  This operator has a simple 
formulation when it acts on a function: its instruction is to multiply the function by the 
position co-ordinate “x”, so the operator is simply the variable “x”.  We won’t go into the 
eigenfunctions of the position operator in this video – these are called the “Dirac delta 
functions”, whose maths is not part of our course – but we will need to use the position 
operator again over the next few slides, when we discuss the uncertainty principle. 
 
[8] Let’s complete our review of operators by considering the energy of a particle, which is a 
critical quantity in physics and also quantum mechanics.   The energy operator is also known 
as the Hamiltonian operator, and has the symbol “H” (with our usual hat to indicate an 
operator).  The form of the energy operator can be deduced by analogy.  The energy of a 
free particle, which means a particle not moving in any potential well, is given by the kinetic 
energy, which can be written in the form “p squared divided by 2m”, where “p” is 
momentum and “m” is the mass of the particle.  To find the energy operator for a free 
particle, we can substitute the operator for momentum into this formula.  Multiplying this 
out, we find the energy operator for a free particle.  It’s the second derivative with respect 
to position, multiplied by “minus h-bar squared divided by 2m”.  For a particle moving in a 
potential, we also need to include the potential energy term.  To do this we just amend our 
Hamiltonian operator by adding in this potential energy function.  So, this potential energy 
part of the operator simply multiplies the function acted on by the operator by “V(x)”. 
 
[9] The eigenfunctions of the energy operator are the solutions of the standard equation 
defining the eigenfunctions and eigenvalues of an operator.  If I substitute in the formula for 
the Hamiltonian, or energy operator, I end up with this differential equation for the energy 
eigenfunctions “psi(x)” in terms of the potential energy function.  You’ll recognise this 



equation from your previous studies of quantum mechanics: it’s called the time-
independent Schrödinger equation.  We’ll shortly link this equation with the time-
dependent Schrödinger equation we met in the previous video, but it is an energy 
eigenfunction equation, where the “E” values are the energy eigenvalues or possible energy 
states of the particle.  This time-independent Schrödinger equation is the typical starting 
point for many quantum mechanics problems, as we’ll see in the next video. 
 
[10] So, we’ve discussed the rules for measuring an observable in quantum mechanics.  And 
we know that the results of this measurement must be an eigenvalue of the corresponding 
operator, but which eigenvalue we obtain is uncertain – unless, the wavefunction is an 
eigenfunction of the operator, in which case we’ll always recover the corresponding 
eigenvalue.  We’ll now discuss the question of whether more than one observable can be 
simultaneously known – in other words, can a function be an eigenfunction of multiple 
operators?  This is a central question in quantum mechanics: which set of observations can 
be simultaneously certain at a given moment.  To answer this question we have to learn 
more about a mathematical idea known as commuting operators. 
 
[11] What is meant by commuting operators?  Two operators are said to commute if, for 
any function, the result of applying those operators doesn’t depend on the order.  So if I first 
apply “B” to the function and then “A” to the result of that, I’ll get the same result as if I had 
first applied “A” to the function and then “B”.  Let’s see some examples.  An example of two 
commuting operators is the first derivative operator, and the second derivative operator.  
Regardless of the order in which I apply those operators, I’ll obtain the third derivative of 
the function.  Therefore, these are commuting operators.  An example of operators which 
do not commute are the derivative operator, and the operator which multiplies a function 
by “x”.  In this case, the result does depend on the order in which we apply these operators, 
as you can see worked out on the slide, since the presence of the “x” creates an extra term 
to differentiate if it’s applied first.  Therefore, these are non-commuting operators. 
 
[12] The concept of whether or not two operators commute is so important in quantum 
mechanics that we define a special symbol to cover it, known as the commutator.  This 
symbol consists of square brackets containing the two operators, and it corresponds to the 
difference between applying the two operators in the opposite orders.  So this commutator 
symbol is itself an operator, which can be applied to a function.  If the commutator is 
formed from two commuting operators, then applying it to a function will always produce a 
result of zero, since the results of the two terms will cancel out.  Returning to our examples, 
in the case where the two operators are the first and second derivatives, then I can 
determine the commutator of those operators to be zero, because it corresponds to 
subtracting identical third derivatives which cancel out.   But if I evaluate the commutator of 
the derivative operator and the operator which multiplies a function by the position co-
ordinate “x”, this commutator can be evaluated to have the effect of multiplying the 
function by “1”, that is, it leaves the function unchanged.  I can derive this result by simply 
applying the commutator to a function, substituting in the operators, and expanding out the 
result, as you can see on the slide. 
 
[13] Let’s now apply these ideas to quantum mechanics, using the operators we’ve 
introduced for position, momentum and energy.  The commutator of the position and 



momentum operators is very similar to the second example on the previous slide, since the 
position operator is equivalent to multiplying by the position co-ordinate, and the 
momentum operator is proportional to the derivative with respect to “x”.  Hence this 
commutator is not zero, but rather the result is to multiply the function by “i h-bar”.  By 
contrast, the commutator between the Hamiltonian (or energy operator) for a free particle 
and the momentum operator is similar to the first example on the previous slide, since the 
energy operator involves the second derivative of position, and the momentum operator 
involves the first derivative of position.  The commutator of these two operators is zero.  We 
can express this situation by saying that the position and momentum operators do not 
commute, but the position and energy operators do commute for a free particle.  So, we’ve 
seen that some pairs of operators have a non-zero commutator, and some pairs of 
operators have a zero commutator. 
 
[14] What does the difference between commuting and non-commuting operators imply for 
measurements?  The important mathematical consequence is that when two operators 
commute, an eigenfunction of one operator is simultaneously an eigenfunction of the 
second operator.  I’ve written a proof of this result on this slide, although you won’t need to 
memorise this.  This proof uses the expansion of a function in terms of eigenfunctions to 
show that when two operators commute, or in other words have zero commutator, these 
operators have an identical or simultaneous set of eigenfunctions.  You can pause the video 
here if you’d like to study this proof more carefully. 
 
[15] In this case, what happens when we measure the observables corresponding to two 
commuting operators?  Suppose a particle has any wavefunction.  We’ll measure one of the 
observables, say “A”, and obtain a result “a_n” which is one of the eigenvalues of that 
operator.  The wavefunction now collapses, and the particle’s new wavefunction is the 
eigenfunction corresponding to this eigenvalue.  Now suppose we measure the second 
observable, “B”.  Since the operators corresponding to “A” and “B” commute, they possess a 
simultaneous set of eigenfunctions, so the new wavefunction is also automatically an 
eigenfunction of the second operator.  Because it’s an eigenfunction, we therefore know 
that when we measure the observable “B”, we’ll always get the corresponding eigenvalue 
“b_n” with 100% certainty.  Let’s note here that the eigenvalues of the two operators are 
different values, even though the eigenfunction is the same.  Let’s now measure the first 
observable again.  The wavefunction is still the same eigenfunction of the first operator, and 
so we’ll again recover the same eigenvalue as before, “a_n”.  And if we now measure the 
second observable again, we’ll also obtain an unchanged result.  In other words, the result 
of measuring the two observables can be simultaneously predicted with 100% certainty, 
because the wavefunction can simultaneously be an eigenfunction of both operators.  These 
two observables can be simultaneously known. 
 
[16] Let’s relate this scenario to our previous examples.  The position and momentum 
operators do not commute, or in other words the commutator of these two operators is 
non-zero.  This means that position and momentum cannot be simultaneously known: 
measuring one of these variables is always going to scramble the other variable in an 
unpredictable way.  In contrast, the Hamiltonian (or energy operator) and momentum 
operators do commute for a free particle, which means a particle moving in a constant 



potential.  This means that the energy and momentum of a free particle can be 
simultaneously known. 
 
[17] We can summarise the situation as follows: certain pairs of observables can be 
simultaneously known, such that repeated measurements of those quantities will always 
recover the same values.  These observables, which are known as compatible observables, 
have commuting operators.  Other pairs of observables can’t be simultaneously known, and 
repeated measurements will produce values which change each time a measurement is 
made.  These observables have non-commuting operators.  It’s important to remember this 
link between commuting operators and compatible or simultaneous observables. 
 
[18] These considerations lead us to the famous uncertainty principle in quantum 
mechanics.  The uncertainty principle is just another way of saying that a pair of observables 
can’t be simultaneously known, if their corresponding operators don’t commute.  A good 
example involves momentum and position.  If a particle has a precisely-known momentum, 
then its wavefunction is an eigenfunction of momentum, which we saw previously in this 
video takes on a complex exponential form.  We can see that this eigenfunction is infinitely 
extended in space – if we calculate the probability density by taking the modulus squared, 
it’s the same value everywhere.  So precise information about the momentum, which we 
have because this is a momentum eigenfunction, implies no knowledge about the position. 
 
[19] A nice conceptualisation of this issue is to imagine that the act of measuring one 
property, causes an uncertainty in another property.  Suppose we want to measure the 
position of an electron, by bouncing a photon off it and using a microscope.  This 
measurement process will perturb the electron and cause an uncertainty in the new value of 
the momentum.  Hence, the act of measuring position, scrambles momentum. 
 
[20] We can describe the uncertainty principle by precise mathematics using commutators 
and expectation values.  I’ve written the exact formulation in the box, where the uncertainty 
is expressed as a standard deviation or spread in multiple measurements of both 
observables.  The uncertainty principle states that the product of these standard deviations 
takes on a minimum value, determined by the commutator of the two corresponding 
operators.  You can find a derivation of this result in the textbook.  Since this limit is applied 
to the product of the two standard deviations, when the measurement of one of the 
observables becomes very accurate, implying a small spread, the uncertainty or spread in 
the other observable must become very large to compensate, and leave the product 
unchanged.  Substituting in the commutator for position and momentum as an example, I 
recover the uncertainty principle that applies to these two observables: the product of the 
error in these two quantities must be at least “h-bar divided by 2”. 
 
[21] In the final part of this video we’ll focus on the time-evolution of the wavefunction.  
Let’s return to the time-dependent Schrödinger equation we met in the previous video, 
which is the equivalent of the equation of motion for a particle in quantum mechanics.  
Substituting in the form of the Hamiltonian or energy operator, this equation can be written 
in the form shown on the slide, where we saw previously that the Hamiltonian includes 
terms corresponding to the kinetic and potential energies of the particle.  There’s an 
important technique for solving equations like this, in which we look for a separable 



solution.  This means that we consider solutions in which the dependence of the 
wavefunction on “x” and “t” is separated into a product of two different functions, each 
depending on only one of these variables.  We can use this separable form as a trial solution 
to the equation. 
 
[22] After substituting in this separable solution to the time-dependent Schrödinger 
equation and re-arranging, we find the equation you can see on the slide.  We have re-
arranged this equation such that all the functions depending on “x” are on the left-hand 
side, and all the functions depending on “t” are on the right-hand side.  The key to the 
solution is that both sides of this equation can be set equal to a constant, which I’ve called 
“E”.  That’s because I can already see from the left-hand side that this equation is just the 
energy eigenfunction equation, in which “E” is the eigenvalue.  I can now use the right-hand 
side of the equation to solve for the time function.  This is a relatively simple differential 
equation whose solution is a complex exponential in time.  Now putting the position and 
time components back together, the separable solution takes the form of the energy 
eigenfunction multiplied by a complex exponential in time which also depends on the 
energy eigenvalue.  This wavefunction is a solution to the time-dependent Schrödinger 
equation which has a definite total energy, because it is an energy eigenfunction evolving 
forward in time.  This wavefunction is also called a “stationary state”, because when I 
compute the modulus squared of the wavefunction, which describes the probability of 
locating the particle as a function of position, this probability does not depend on time, 
because the complex exponential cancels out when taking the complex conjugate.  So the 
“stationary” refers to the fact that the probability distribution of position does not vary with 
time. 
 
[23] How do we apply this solution form in a practical case?  Let’s say we’re given the 
wavefunction of a particle at time zero, and we want to know how this wavefunction 
evolves to later times.  We can use stationary states to solve this problem, and we’ll express 
the solution as a series of steps.  The first step is to express the wavefunction we’ve been 
given, at time zero, as a sum of energy eigenfunctions.  We can always do this for any 
wavefunction.  The second step is to remember that each energy eigenfunction evolves 
forward in time by multiplying it by the complex exponential factor depending on the 
energy of the state.  The third step is to combine these time-evolving eigenfunctions using 
the same coefficients as in the first step.  This produces the time-dependent form of the 
wavefunction. 
 
[24] Let’s consider an example of this, using the same case we considered in the previous 
video, of a particle in an infinite potential well with a wavefunction at time zero equal to the 
sum of two sine waves.  We’ll apply our 3-step method to find the wavefunction at later 
times.  First, we saw previously that this wavefunction can be expressed as a sum of the first 
two energy eigenfunctions of the infinite potential well, with coefficients equal to “1 divided 
by the square root of 5” and “2 divided by the square root of 5”, which ensure that the 
wavefunction is normalised.  Moving to the second step, if the two eigenfunctions have 
associated energy values “E_1” and “E_2”, we can introduce the time evolution by 
multiplying each eigenfunction by a complex exponential function depending on these 
energy values.  And in the third step, we recombine these time-evolving pieces using the 
same expansion coefficients as in the first step.  We can also check that the modulus 



squared of this new wavefunction will be equal to “1” at all times, ensuring that 
normalisation holds true at all times.  I’ll leave that for you to check based on the given 
equationif you wish to do so! 
 
[25] Here’s a summary slide to recap the principles we’ve been discussing in this video.  
We’ve introduced the different operators for momentum, position and energy, and 
identified the time-independent Schrödinger equation as the energy eigenfunction 
equation.  We’ve also introduced the idea of commuting operators, and their significance in 
understanding whether or not two observables can be simultaneously known, which is 
related to the famous uncertainty principle of quantum mechanics.  We’ve also studied the 
time-evolution of the wavefunction, and how the time-dependent Schrödinger equation can 
be solved by writing the solution as a sum of stationary states, which are the energy 
eigenfunctions multiplied by time-dependent complex exponentials depending on each 
energy value.  I hope this was a useful guide to the slides, and I look forward to chatting 
with you again soon! 


