
Section 2: How QM Works, Part 2

In these slides we will cover:

• The momentum operator and its eigenfunctions

• The position and energy operators

• The time-independent Schrödinger equation and energy 
eigenfunctions

• Commutation between operators

• Implication for simultaneous (or compatible) observables

• The uncertainty principle

• The time-dependent Schrödinger equation

• Solving the time-evolving wavefunction



Momentum, position & energy operators

Recipe for measurement in Quantum Mechanics (recap)

The state of the particle is described by its wavefunction 𝜓(𝑥)

We want to 
measure an 

observable 𝐴

What is the operator 
&𝐴 corresponding to 
this observable?

What are the eigenfunctions
𝜙!(𝑥) and eigenvalues 𝑎! of 

this operator &𝐴?

Express the wavefunction as a linear 
combination of the eigenfunctions, 

𝜓 𝑥 = ∑! 𝑐! 𝜙!(𝑥)

The possible results of the 
measurement are the eigenvalues 

𝑎!, with probabilities 𝑐! "

Perform the 
measurement

Obtain one of the 
eigenvalues, 𝑎#

The wavefunction collapses to the 
corresponding eigenfunction, 𝜙#(𝑥)



Momentum, position & energy operators

The key observables for a particle

• We saw in the last section that observables are represented 
by operators in Quantum Mechanics.  Let’s consider:

• Which operators represent these observables, and what 
does this imply for measurements of these quantities?

Momentum Position Energy



Momentum, position & energy operators

The momentum operator

• The momentum operator for a particle moving in 1D is

• The momentum operator �̂� differentiates a function with 
respect to 𝑥, then multiplies the result by the constant −𝑖ℏ

• The “𝑖” seems strange, but remember that the operator acts 
on a wavefunction, which can be a complex number

• Using the definition of eigenfunctions and eigenvalues, 
�̂�𝜙 𝑥 = 𝑎𝜙 𝑥 , we can see that 𝜙 𝑥 = 𝑒!"#/ℏ is an 
eigenfunction of momentum with eigenvalue 𝑎 = 𝑝

�̂� = −𝑖ℏ
𝑑
𝑑𝑥



Momentum, position & energy operators

Momentum eigenfunctions

• To determine which values of momentum can be measured 
from a given wavefunction, and their corresponding 
probabilities, we can apply the usual QM rules

• We express the (normalised) wavefunction 𝜓(𝑥) of a particle 
as a sum over the eigenfunctions of momentum:

• The probabilities of obtaining values 𝑝& are then 𝑐& '

𝜓 𝑥 =0
&
𝑐& 𝜙&(𝑥) =0

&
𝑐& 𝑒!"!#/ℏ



Momentum, position & energy operators

Momentum eigenfunctions

• Example: what momentum values can be measured for a 
particle in the ground state of an infinite well in the region 
𝑥 < 𝐿, which has wavefunction 𝜓 𝑥 = (

) cos
*#
') ?

• To express this wavefunction as a sum of complex exponentials, we can 
use the mathematical relation cos 𝜃 = 𝑒$% + 𝑒&$% /2.  We find: 𝜓 𝑥 =
#
" '

𝑒$()/"' + 𝑒&$()/"' .  [Also useful: sin 𝜃 = 𝑒$% − 𝑒&$% /2𝑖]

• Now let’s compare this expression with the momentum eigenfunctions
𝜙 𝑥 ∝ 𝑒$+)/ℏ.  We can see that 𝜓(𝑥) is a sum of two eigenfunctions, with 
eigenvalues 𝑝 = ± (ℏ

"'
, and these are the 2 possible momentum values



Momentum, position & energy operators

The position operator

• The operator for the position of a particle, 6𝑥, has a particularly 
simple form:

• Applying 6𝑥 to a function just involves multiplying the function 
by 𝑥 : 6𝑥 𝑓 𝑥 = 𝑥 8 𝑓(𝑥)

• [In case you’re wondering, the eigenfunctions of ;𝑥 are the “Dirac delta 
functions” of 𝑥, 𝛿-(𝑥), but this piece of maths isn’t part of our course.]

• We’ll soon return to the position operator when we discuss the 
uncertainty principle in upcoming slides!

!𝑥 = 𝑥



Momentum, position & energy operators

The energy operator

• The energy operator has a special role in Quantum Mechanics 
and is also known as the Hamiltonian, 9𝐻

• The form of the energy operator can be deduced by analogy 

with classical mechanics.  For a free particle, 𝐸 = (
'𝑚𝑣

' = ""

'+

• For a particle moving in a potential, 𝐸 = ""

'+
+ 𝑉(𝑥)

9𝐻 =
�̂�'

2𝑚
=

1
2𝑚

−𝑖ℏ
𝑑
𝑑𝑥

−𝑖ℏ
𝑑
𝑑𝑥

= −
ℏ'

2𝑚
𝑑'

𝑑𝑥'

9𝐻 =
�̂�'

2𝑚
+ 𝑉 𝑥 = −

ℏ'

2𝑚
𝑑'

𝑑𝑥'
+ 𝑉(𝑥)



Momentum, position & energy operators

Energy eigenfunctions

• The eigenfunctions of the energy operator are solutions of

• This is known as the time-independent Schrödinger equation, 
and its solutions are the energy eigenfunctions 𝜓&(𝑥) with 
corresponding energy eigenvalues 𝐸&

• The time-independent Schrödinger equation is a typical 
starting point for QM problems, and we’ll see some examples 
of this in the next Section

9𝐻 𝜓 𝑥 = 𝐸 𝜓(𝑥)

−
ℏ'

2𝑚
𝑑'𝜓 𝑥
𝑑𝑥'

+ 𝑉 𝑥 𝜓 𝑥 = 𝐸 𝜓(𝑥)



Commuting operators & compatible observables

Compatible observables

• We have discussed the rules for measuring a single observable 
such as the momentum, position or energy of a particle

• The outcome of measuring an observable is uncertain, unless 
the wavefunction is an eigenfunction of the operator – in 
which case we’ll always measure the corresponding eigenvalue

• Can more than one observable be simultaneously known?
Can a function be an eigenfunction of multiple operators?

• This question will involve a short mathematical detour into the 
idea of commuting operators



Commuting operators & compatible observables

Commuting operators

• Two operators B𝐴 and D𝐵 commute if for any function 𝑓(𝑥)

• If two operators commute, it doesn’t matter in which order we 
apply the operators to a function, we’ll find the same result

• Example of commuting operators: B𝐴 = ,
,# and D𝐵 = ,"

,#".  These 

operators commute because B𝐴 D𝐵𝑓 = D𝐵 B𝐴𝑓 = ,#-
,##

• Example of non-commuting operators: B𝐴 = ,
,#

and D𝐵 = 𝑥.  In 

this case, B𝐴 D𝐵𝑓 = ,
,#

𝑥𝑓 = 𝑓 + 𝑥 ,-
,#

; and D𝐵 B𝐴𝑓 = 𝑥 ,-
,#
≠ B𝐴 D𝐵𝑓

$𝐴 &𝐵 𝑓 𝑥 = &𝐵 $𝐴 𝑓(𝑥)



Commuting operators & compatible observables

Commutators

• Whether or not operators commute is so important that we 
define a special symbol, the commutator of the operators:

• If B𝐴 and D𝐵 commute then the operator B𝐴, D𝐵 will give zero
when applied to a function, since B𝐴 D𝐵𝑓 − D𝐵 B𝐴𝑓 = 0

• Example 1: if B𝐴 = ,
,#

and D𝐵 = ,"

,#"
, then B𝐴, D𝐵 = 0 because 

B𝐴 D𝐵𝑓 − D𝐵 B𝐴𝑓 = 0, for any function 𝑓

• Example 2: if B𝐴 = ,
,#

and D𝐵 = 𝑥, then B𝐴, D𝐵 = 1 because 
B𝐴 D𝐵𝑓 − D𝐵 B𝐴𝑓 = 𝑓 + 𝑥 ,-,# − 𝑥

,-
,# = 𝑓, for any function 𝑓

$𝐴, &𝐵 = $𝐴 &𝐵 − &𝐵 $𝐴



Commuting operators & compatible observables

Commutators

• Here are some key results concerning the commutators of the 
position operator 6𝑥, momentum operator �̂� and energy 
operator 9𝐻:

• The position and momentum operators do not commute

• The position and energy operators do commute for a particle 
moving in a constant potential 𝑉 𝑥 = 𝑉.

!𝑥, �̂� = 𝑖ℏ

1𝐻, �̂� = 0 if 𝑉 𝑥 = constant



Commuting operators & compatible observables

Simultaneous eigenfunctions and observables

• If two operators B𝐴 and D𝐵 commute, then an eigenfunction of 
operator 9𝑨 is simultaneously an eigenfunction of operator 9𝑩

• Non-examinable: let’s write a quick proof of this result.  Any function may 
be expanded as a sum of eigenfunctions, 𝑓 𝑥 = ∑! 𝑐!𝜙!(𝑥)

• Now we use the relations &𝐴𝜙! = 𝑎!𝜙! and >𝐵𝜙! = 𝑏!𝜙!:

&𝐴, >𝐵 𝑓 = &𝐴 >𝐵𝑓 − >𝐵 &𝐴𝑓 = &𝐴 >𝐵B
!
𝑐!𝜙! 𝑥 − >𝐵 &𝐴B

!
𝑐!𝜙!(𝑥)

=B
!
𝑐! &𝐴 >𝐵𝜙! 𝑥 − >𝐵 &𝐴𝜙! 𝑥 =B

!
𝑐! &𝐴𝑏!𝜙! 𝑥 − >𝐵𝑎!𝜙! 𝑥

=B
!
𝑐! 𝑏! &𝐴𝜙! 𝑥 − 𝑎! >𝐵𝜙! 𝑥 =B

!
𝑐! 𝑏!𝑎!𝜙! 𝑥 − 𝑎!𝑏!𝜙! 𝑥 = 0



Commuting operators & compatible observables

Simultaneous eigenfunctions and observables

• If two operators 9𝑨 and 9𝑩 commute, what happens when we 
measure their corresponding observables?

Particle initially 
has any 

wavefunction Ψ

We measure 
observable 𝐴 and 
obtain result 𝑎!, 

an eigenvalue of &𝐴

Particle now has 
wavefunction 𝜙!, the 

eigenfunction of &𝐴
corresponding to 𝑎!

Observable 𝐵 is 
now measured

Since &𝐴 and >𝐵 commute, 
the wavefunction 𝜙! is 

also an eigenfunction of >𝐵

We obtain result 
equal to eigenvalue 
𝑏!, wavefunction
doesn’t change

We measure observable 
𝐴 again and obtain an 
unchanged result 𝑎! 𝑨 and 𝑩 can be simultaneously known



Commuting operators & compatible observables

Simultaneous eigenfunctions and observables

• Relating this to our previous examples …

!𝑥, �̂� = 𝑖ℏ
The position and 

momentum 
operators do not 

commute

Position and 
momentum cannot
be simultaneously 

known

1𝐻, �̂� = 0
The energy and 

momentum operators 
do commute (if 
𝑉 𝑥 = constant)

Energy and 
momentum can be 

simultaneously known 
(if 𝑉 𝑥 = constant)(if 𝑉 𝑥 = constant)



Commuting operators & compatible observables

Simultaneous eigenfunctions and observables

• We can summarise it as follows:

• Certain pairs of observables can be simultaneously known, 
i.e. repeated measurements will produce the same values

• These have commuting operators (are “compatible”)

• Certain pairs of observables can’t be simultaneously known, 
i.e. repeated measurements will produce different values

• These observables have non-commuting operators



Commuting operators & compatible observables

The uncertainty principle

• The concept that two observables cannot be simultaneously 
known, if their corresponding operators do not commute, is 
known as the uncertainty principle (for pairs of observables)

• A good example is momentum and position.  We have seen 
that a particle with a precisely known momentum 𝑝 has a 
wavefunction 𝜓 𝑥 = 𝑒!"#/ℏ (an eigenfunction of momentum)

• The probability of finding the particle in space is then, 
𝜓(𝑥) ' = 1 – the particle is infinitely extended in space!

• Exact knowledge of momentum means no knowledge of 
position – this is the uncertainty principle



Commuting operators & compatible observables

The uncertainty principle

• The uncertainty principle is sometimes described as the act of 
measuring a particular property (such as position) causes an 
uncertainty in another property (such as momentum)

If an electron is 
prepared in a state of 
known momentum, 
the act of measuring 
its position perturbs 
its momentum



Commuting operators & compatible observables

Relation of the uncertainty principle to commutators

• The uncertainty principle can be precisely described 
mathematically using commutators and expectation values:

• For the example of position and momentum: since 6𝑥, �̂� = 𝑖ℏ, 
then 𝜎#𝜎" ≥ ℏ/2, where 𝜎# = 𝑥' − 𝑥 '

If B𝐴, D𝐵 = 𝑖 B𝐶, the spread of measurements of observables 𝐴
and 𝐵 are related by 𝜎/ 𝜎0 ≥

(
'
B𝐶 .  (Note: the spread of 

measurements means their standard deviation, 𝜎. = 𝐴" − 𝐴 ".) 



Time-evolution of the wavefunction

Postulate for the time-evolution of 𝚿

• The time-development of the wavefunction Ψ(𝑥, 𝑡) is given by 
the time-dependent Schrödinger equation, which we can 
write in the form

• 9𝐻 is the Hamiltonian or energy operator, which for a particle 

moving in 1D is 9𝐻 = − ℏ"

'+
,"

,#" + 𝑉(𝑥) [i.e., a function of 𝑥]

• We consider a separable solution to this equation, in which 𝑥
and 𝑡 are separated into different functions: 

9𝐻 Ψ 𝑥, 𝑡 = 𝑖ℏ
𝜕Ψ(𝑥, 𝑡)
𝜕𝑡

Ψ 𝑥, 𝑡 = 𝜓 𝑥 𝑇(𝑡)



Time-evolution of the wavefunction

Separable solutions and stationary states

• After substituting in this solution we obtain:

• We obtain the final equality using 9𝐻𝜓 𝑥 = 𝐸𝜓(𝑥), if 𝜓 is an 
eigenfunction of energy with eigenvalue 𝐸.  In this case, we can 
solve the equation for 𝑇 and find 𝑇 𝑡 = 𝑒1!23/ℏ

• Separated solutions Ψ 𝑥, 𝑡 = 𝜓 𝑥 𝑒1!23/ℏ are states of 
definite total energy (i.e., they are eigenfunctions of 9𝐻)

• These are also called “stationary states”, since the probability 
distribution Ψ 𝑥, 𝑡 ' = Ψ∗Ψ = 𝜓(𝑥) ' is time-independent

1
𝜓(𝑥)

9𝐻 𝜓 𝑥 =
𝑖ℏ
𝑇(𝑡)

𝑑𝑇(𝑡)
𝑑𝑡

= 𝐸



Time-evolution of the wavefunction

The time-evolving wavefunction

• Suppose we are given the wavefunction of a particle at 𝑡 = 0, 
Ψ(𝑥, 0).  How do we determine its time-evolution 𝜳(𝒙, 𝒕)?

Step 1 Express Ψ(𝑥, 0) as a linear combination of the 
energy eigenfunctions,Ψ 𝑥, 0 = ∑! 𝑐! 𝜓!(𝑥)

Step 2

Step 3

Each eigenfunction (with energy 𝐸!) evolves forward in 
time according to the previous slide: 𝜓! 𝑥 𝑒&$/!0/ℏ

The full solution is then the linear combination 
Ψ 𝑥, 𝑡 = ∑! 𝑐! 𝜓!(𝑥) 𝑒&$/!0/ℏ



Time-evolution of the wavefunction

• We have seen this example in Sec 1, where we expressed the wavefunction
in terms of the energy eigenfunctions, Ψ 𝑥, 0 = #

1
𝜙# 𝑥 + "

1
𝜙" 𝑥

• If these eigenfunctions have associated energies 𝐸# and 𝐸", we can find the 
time-dependent wavefunction using the rule on the previous slide, such 
that Ψ 𝑥, 𝑡 = #

1
𝜙# 𝑥 𝑒&$/"0/ℏ + "

1
𝜙" 𝑥 𝑒&$/#0/ℏ

• The new 𝑒&$/0/ℏ factors do not change the overall normalisation of the 
wavefunction, such that ∫&2

2 Ψ(𝑥, 𝑡) " 𝑑𝑥 = 1 at all times!

Example: a particle in an infinite potential well in the range 𝑥 < 𝐿 is in 
an the wavefunction 𝛹 𝑥, 0 = #

1'
cos ()

"'
+ 2 sin ()

'
.  What is the 

wavefunction at later times, 𝛹 𝑥, 𝑡 ?

The time-evolving wavefunction



Summary

Time evolution of 
the wavefunction

Commuting 
operators and 

compatible 
observables

• The time-evolution of Ψ is given by 6𝐻Ψ = 𝑖ℏ !"
!#

• The solutions are Ψ 𝑥, 𝑡 = ∑$ 𝑐$ 𝜓$ 𝑥 𝑒%&'!#/ℏ, 
where 𝜓$(𝑥) are the energy eigenfunctions

• Two operators commute if C𝐴, E𝐵 = C𝐴 E𝐵 − E𝐵 C𝐴 = 0
• Commuting operators have joint eigenfunctions, 

whose observables can be simultaneously known
• The observables of non-commuting operators are 

governed by the uncertainty principle

• The momentum operator is �̂� = −𝑖ℏ *
*+

• The position operator is K𝑥 = 𝑥 (i.e., multiply by 𝑥)

• The energy operator is 6𝐻 = ,-"

./
+ 𝑉 = − ℏ"

./
*"

*+"
+ 𝑉

• Energy eigenfunctions satisfy the time-independent 
Schrödinger equation, 6𝐻𝜓$ 𝑥 = 𝐸𝜓$ 𝑥

Momentum, 
position and 

energy operators


