
Section	1:	How	QM	Works,	Part	1

In	these	slides	we	will	cover:

• The	Schrödinger	Equation

• The	probability	interpretation	of	the	wavefunction

• The	discrete	nature	of	observables

• The	correspondence	between	observables	and	operators

• Eigenfunctions,	eigenvalues	and	their	properties

• Measurement	in	Quantum	Mechanics

• Expectation	values



The	wavefunction

Particles	and	waves

• In	classical	physics,	we	use	Newton’s	
Laws to	determine	the	equation	of	
motion	𝑥(𝑡) of	a	particle	of	mass	𝑚
moving	in	a	potential	𝑉(𝑥):

• Equivalently,	we	can	conserve	the	
energy of	the	particle:

𝐹 = 𝑚	
𝑑+𝑥
𝑑𝑡+ = −

𝑑𝑉
𝑑𝑥

1
2𝑚𝑣

+ + 𝑉 𝑥 = Energy



The	wavefunction

• This	picture	cannot	apply	in	the	Quantum	world,	because	
particles	behave	like	waves	(see:	the	double-slit	experiment)

• Since	a	wave	is	an	object	extended	in	space,	we	need	to	
change	how	we	describe	a	particle	

Particles	and	waves



The	wavefunction

The	Schrödinger	equation

• In	Quantum	Mechanics,	the	equation	of	motion	of	a	particle	in	
a	potential	𝑉(𝑥) is	replaced	by	the	Schrödinger	equation:

• The	symbol	ℏ = ℎ/2𝜋,	where	ℎ is	Planck’s	constant

• It’s	an	equation	for	the	wavefunction of	the	particleΨ(𝑥, 𝑡).		
This	looks	complicated,	but	we’ll	soon	see	it’s	the	same	as:

• The	𝑖 = −1� appearing	in	the	Schrödinger	equation	looks	
strange	– the	wavefunction is	a	complex	number	in	general!

−
ℏ+

2𝑚
𝜕+Ψ 𝑥, 𝑡
𝜕𝑥+ + 𝑉 𝑥 	Ψ 𝑥, 𝑡 = 𝑖ℏ

𝜕Ψ(𝑥, 𝑡)
𝜕𝑡

Kinetic	energy + Potential	energy = Total	energy



The	wavefunction

The	wavefunction

• The	wavefunctionΨ – that’s	the	Greek	letter	“psi”	– is	how	we	
describe	the	state	of	a	particle	in	Quantum	Mechanics

• At	a	given	time	𝑡,	a	particle	is	not	at	a	fixed	position	𝑥(𝑡),	but	is	
in	a	state	described	as	a	function	of	position,	Ψ(𝑥, 𝑡)

• The	wavefunction depends	on	the	co-ordinates	of	a	system	and	
contains	all	the	information	about	the	system

Classical: Quantum:

becomes



The	wavefunction

• What	does	the	wavefunction mean?		It’s	connected	to	the	
probability of	the	particle	being	in	a	particular	position:

• The	particle	must	be	somewhere!		Hence,	these	probabilities	
must	sum	to	1.0,	which	is	known	as	the	normalisation of	Ψ:

• The	probability	interpretation	of	the	wavefunction implies	that	
Quantum	Mechanics	has	a	statistical or	indeterminate nature

Probability	interpretation	of	the	wavefunction

Probability	of	finding	a	particle	
in	a	range	𝑥 → 𝑥 + 𝑑𝑥 = Ψ +	𝑑𝑥

Note:	although	Ψ can	be	a	
complex	number,	 Ψ + =
Ψ L Ψ∗ is	real,	as	it	should	
be	for	a	probability!

N Ψ(𝑥, 𝑡) +	𝑑𝑥
O

PO
= 1



Operators,	eigenfunctions &	eigenvalues

Discrete	nature	of	observables

• In	Quantum	Mechanics,	a	
measurement	of	a	quantity	can	only	
produce	discrete	(specific)	
outcomes,	not	any	value

• You	have	previously	studied	a	
particle	in	an	infinite	potential	well,	
which	has	certain	allowed	energy	
levels	(see	recap	on	next	slide)

• Another	example	is	poor	
Schrödinger’s	cat,	which	only	has	2	
possible	states	…



Operators,	eigenfunctions &	eigenvalues

Discrete	nature	of	observables

• In	Physics	2A	QM,	you	
studied	that	a	particle	
enclosed	in	an	infinite	
potential	well	has	discrete	
energies	and	wavefunctions

• We’ll	see	this	example	again	
in	Section	3!

Image	credit:	
https://opentextbc.ca/universityphysic
sv3openstax/chapter/the-quantum-
particle-in-a-box/



Operators,	eigenfunctions &	eigenvalues

Discrete	nature	of	observables

• Physics	is	described	in	the	language	of	mathematics;	so	we	
need	a	mathematical	structure	in	which	discrete	values	appear

• Welcome	to	the	world	of	operators,	eigenfunctions and	
eigenvalues!		Please	do	not	turn	back!

• We	can	describe	the	mathematical	framework	of	Quantum	
Mechanics	by	the	following	statement:

• What	do	these	words	mean??

Each	quantity	we	can	observe	is	represented	by	a	corresponding	
operator.		If	we	measure	that	observable,	we	will	always	obtain	

a	result	which	is	one	of	the	eigenvalues	of	the	operator



Operators,	eigenfunctions &	eigenvalues

What	is	an	operator?

• An	operator	is	a	mathematical	instruction	which	acts	on	a	
function	to	produce	another	function:

• Example:	 Q
QR

is	an	operator	which	acts	on	a	function	𝑓(𝑥) to	

produce	the	derivative	function	𝑔 𝑥 = QU
QR

• Example:	𝑥 L (“multiply	by	𝑥”)	is	an	operator	which	acts	on	a	
function	𝑓(𝑥) to	produce	another	function	𝑔 𝑥 = 𝑥	𝑓(𝑥)

Operator Function	𝑓(𝑥) Function	𝑔(𝑥)acts	on to	produce



Operators,	eigenfunctions &	eigenvalues

Eigenfunctions and	eigenvalues

• When	an	operator	acts	on	some	special	functions – called	the	
eigenfunctions of	the	operator	– it	returns	the	same	function,	
scaled	by	a	number	– called	an	eigenvalue

𝐴W	𝜙Y 𝑥 = 𝑎Y	𝜙Y(𝑥)

𝐴W is	an	operator –
these	are	usually	

written	with	little	hats! 𝜙Y(𝑥) is	an	
eigenfunction – the	
subscript	“𝑛”	labels	the	
different	eigenfunctions
(𝜙\, 𝜙+, 𝜙], … )

𝑎Y is	the	eigenvalue
(number)	
corresponding	to	the	
eigenfunction 𝜙Y(𝑥)



Operators,	eigenfunctions &	eigenvalues

Eigenfunctions and	eigenvalues

• When	an	operator	acts	on	some	special	functions – called	the	
eigenfunctions of	the	operator	– it	returns	the	same	function,	
scaled	by	a	number	– called	an	eigenvalue

• As	an	example,	let’s	consider	the	operator	𝐴W = Q
QR

again

• 𝜙 𝑥 = 𝑒`R is	an	eigenfunction of	𝐴W with	eigenvalue	𝑎

• Why? Because	𝐴W𝜙 𝑥 = Qa
QR
= 𝑎	𝑒`R = 𝑎	𝜙 𝑥 – the	operator	

has	returned	the	same	function,	scaled	by	a	number

𝐴W	𝜙Y 𝑥 = 𝑎Y	𝜙Y(𝑥)



Operators,	eigenfunctions &	eigenvalues

Properties	of	the	operators	representing	observables

Each	quantity	we	can	observe	is	represented	by	a	corresponding	
operator.		If	we	measure	that	observable,	we	will	always	obtain	

a	result	which	is	one	of	the	eigenvalues	of	the	operator

Momentum
Represented	by	
mathematical	

operator

Position
Represented	by	
mathematical	

operator

Energy
Represented	by	
mathematical	

operator

Angular	momentum
Represented	by	
mathematical	

operator



Operators,	eigenfunctions &	eigenvalues

Properties	of	the	operators	representing	observables

• The	operators	representing	observables	have	3	key	properties:

1. Their	eigenvalues	are	real	(not	complex)	numbers,	so	they	can	
correspond	to	the	results	of	physical	measurements

2. Different	eigenfunctions are	orthogonal,	which	is	defined	by:

3. Any	other	function	𝑓(𝑥) can	be	expressed	as	a	linear	
combination	of	the	eigenfunctions,	which	we	can	write	as:

N 𝜙b∗ 𝑥 	𝜙Y 𝑥 	𝑑𝑥
O

PO
= c1, 𝑚 = 𝑛

	0, 𝑚 ≠ 𝑛

𝑓 𝑥 =e𝑐Y	𝜙Y(𝑥)
�

Y

Note:	𝜙∗ means	the	
complex	conjugate	of	𝜙



Operators,	eigenfunctions &	eigenvalues

Properties	of	the	operators	representing	observables

• We	can	use	the	energy	
eigenfunctions for	the	
infinite	potential	well	to	
illustrate	orthogonality

• These	sine	functions	average	
to	zero	if	𝑚 ≠ 𝑛,	
∫ 𝜙b∗ 𝑥 	𝜙Y 𝑥 	𝑑𝑥
O
PO = 0

• If	𝑚 = 𝑛,	then	
∫ 𝜙Y(𝑥) +	𝑑𝑥
O
PO = 1,	which	
is	the	same	as	normalising	
the	eigenfunctions



Operators,	eigenfunctions &	eigenvalues

Linear	combinations	of	eigenfunctions

• We	just	mentioned	that	any	function	𝑓(𝑥) can	be	expressed	as	
a	linear	combination	of	the	eigenfunctions of	an	operator:

• We	can	determine	the	coefficients	𝑐Y using	the	orthogonality	
property.		We	can	derive	them	by	considering:

𝑓 𝑥 =e𝑐Y	𝜙Y(𝑥)
�

Y

N 𝜙b∗ 𝑥 	𝑓 𝑥 	𝑑𝑥 =
O

PO
N 𝜙b∗ 𝑥 	e 𝑐Y	𝜙Y(𝑥)

�

Y
𝑑𝑥

O

PO

=e 𝑐Y
�

Y
N 𝜙b∗ 𝑥 	𝜙Y 𝑥 	𝑑𝑥
O

PO

= 𝑐b
This	is	equal	to	1 if	𝑚 = 𝑛
and	0 otherwise

Changing	the	order	of	
the	integral	and	sum	…



Measurement	in	Quantum	Mechanics

Measurement	if	𝚿 is	an	eigenfunction

• At	the	heart	of	Quantum	Mechanics	is	the	how	the	
wavefunction is	related	to	measurement	of	observables

• Suppose	we	measure	a	particular	observable	of	a	system	(e.g.	
momentum,	position,	energy,	angular	momentum,	etc.)

• Recapping	… this	observable	is	represented	by	a	corresponding
operator	(we	will	see	some	examples	shortly)

• If	the	wavefunction of	the	system	is	an	eigenfunction of	the	
corresponding	operator	(Ψ = 𝜙Y),	then	the	result	of	the	
measurement	is	the	corresponding	eigenvalue,	𝑎Y



Measurement	in	Quantum	Mechanics

Measurement	if	𝚿 is	not	an	eigenfunction

• If	the	wavefunctionΨ is	not an	eigenfunction of	the	
corresponding	operator,	it	can	always	be	expressed	as	a	linear	
combination of	the	eigenfunctions:

• In	this	case,	the	result	of	the	measurement	may	be	any	one	of	
the	eigenvalues	𝒂𝒏,	with	corresponding	probabilities	 𝒄𝒏 𝟐

• Following	the	measurement,	the	wavefunction “collapses”	
and	becomes	the	eigenfunction,	Ψ(𝑥) = 𝜙Y(𝑥)

• If	the	observable	is	measured	again,	we’ll	find	value	𝑎Y again

Ψ 𝑥 =e𝑐Y	𝜙Y(𝑥)
�

Y



Measurement	in	Quantum	Mechanics

Measurement	if	𝚿 is	not	an	eigenfunction

Measurement	changes	the	wavefunction,	causing	it	to	
“collapse”	into	the	eigenfunction corresponding	to	the	result	of	
the	measurement.		This	ensures	that	future	measurements	of	

the	quantity	produce	the	same	result.

• It	is	equivalent	to	opening	
the	box	containing	
Schrödinger’s	cat,	and	seeing	
the	result!

[Yes,	cat	photos	are	an	
occupational	hazard	here.]



Measurement	in	Quantum	Mechanics

Measurement	if	𝚿 is	not	an	eigenfunction

• This	gives	us	the	recipe	for	measurement	in	Quantum	
Mechanics,	represented	by	the	following	flow	chart!	

The	state	of	the	particle	is	described	by	its	wavefunctionΨ(𝑥)

We	want	to	
measure	an	
observable	𝐴

What	is	the	operator	
𝐴W corresponding	to	
this	observable?

What	are	the	eigenfunctions
ΨY(𝑥) and	eigenvalues	𝑎Y of	

this	operator	𝐴W?

Express	the	wavefunction as	a	linear	
combination	of	the	eigenfunctions,	

Ψ 𝑥 = ∑ 𝑐Y	𝜙Y(𝑥)�
Y

The	possible	results	of	the	
measurement	are	the	eigenvalues	

𝑎Y,	with	probabilities	 𝑐Y +

Perform	the	
measurement

Obtain	one	of	the	
eigenvalues,	𝑎\

The	wavefunction collapses	to	the	
corresponding	eigenfunction,	𝜙\(𝑥)



Measurement	in	Quantum	Mechanics

Measurement	if	𝚿 is	not	an	eigenfunction

• The	factor	 \
no� is	to	ensure	Ψ(𝑥) is	normalised:	∫ Ψ(𝑥) +	𝑑𝑥O

PO = 1

• We	notice	that	the	terms	in	the	square	bracket	are	the	1st and	2nd energy	
eigenfunctions.		Substituting	these	in,	we	find	Ψ 𝑥 = \

n�
𝜙\ 𝑥 + +

n�
𝜙+ 𝑥

• Hence,	the	possible	measurements	of	the	energy	state	are	𝐸\ (with	

probability	 𝑐\ + = \
n�
+
= \

n
)	and	𝐸+ (with	probability	 𝑐+ + = +

n�
+
= q

n
)

• The	probabilities	\
n
and	q

n
sum	to	1,	as	they	should!

Example:	a	particle	in	an	infinite	potential	well	in	the	range	 𝑥 < 𝐿 is	
prepared	in	the	wavefunction𝛹 𝑥 = \

no� cos vR
+o

+ 2 sin vR
o

.		What	
energy	states	can	be	measured,	and	with	what	probabilities?



Measurement	in	Quantum	Mechanics

Expectation	values

• Although	we	can’t	predict	exactly	which	value	will	result	from	a	
measurement	(only	their	probabilities),	we	can	predict	the	
mean	measurement,	also	known	as	the	expectation	value –
which	has	the	symbol	of	angled	brackets,	 𝑎

• Example:	what	is	the	expectation	value	when	a	dice	is	thrown?

𝑎 =eProb 𝑛 	𝑎Y

�

Y

𝑎 =
1
6 L 1 +

1
6 L 2 +

1
6 L 3 +

1
6 L 4 +

1
6 L 5 +

1
6 L 6 = 3.5

[Note:	the	value	3.5 cannot	be	obtained	for	any	individual	
throw	of	the	dice,	but	is	the	average	over	many	throws!]



Measurement	in	Quantum	Mechanics

Expectation	values

• In	Quantum	Mechanics,	we	have	seen	that	Prob 𝑛 = 𝑐Y +

• Example:	for	the	particle	in	the	infinite	potential	well	2	slides	
back,	 𝐸 = \

n
𝐸\ +

q
n
𝐸+

• We	can	also	find	a	general	relation	by	substituting	in	𝑐Y =
∫ Ψ 𝑥 	𝜙Y∗(𝑥)
O
PO and	using	the	orthogonality	relation:

𝑎 =eProb 𝑛 	𝑎Y

�

Y

=e 𝑐Y +	𝑎Y

�

Y

𝑎 = N Ψ∗ 𝑥 	𝐴WΨ 𝑥 	𝑑𝑥
O

PO



Summary

The	rules	of	Quantum	Mechanics

• The	state	of	a	particle	is	described	by	the	wavefunctionΨ(𝑥, 𝑡),	which	
satisfies	the	Schrödinger	equation,	− ℏ|

+b
}|~
}R|

+ 𝑉 𝑥 	Ψ = 𝑖ℏ }~
}�

• The	probability	of	a	particle	being	located	at	a	position	in	the	range	[𝑥, 𝑥 +
𝑑𝑥] at	time	𝑡 is	 Ψ(𝑥, 𝑡) +

• Physical	observables	are	represented	by	operators,	and	the	possible	results	
of	measuring	an	observable	are	the	eigenvalues	𝑎Y of	those	operators

• Any	wavefunction can	be	expressed	as	a	linear	combination	of	the	
eigenfunctions of	these	operators:	Ψ = ∑ 𝑐Y𝜙Y�

Y .		The	probability	of	
measuring	the	eigenvalue	𝑎Y is	then	 𝑐Y +

• If	a	measurement	of	an	observable	yields	a	result	𝑎Y,	the	wavefunction
collapses	into	the	corresponding	eigenfunction,	Ψ = 𝜙Y


