## Quantum Mechanics Week 5: Class Prep solutions

Q1) The Bohr formula for the energy eigenvalues of the hydrogen atom is:

$$
E_{n}=-\frac{\mu}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{n^{2}}
$$

Q2) The 3D time-independent Schrödinger equation is:

$$
-\frac{\hbar^{2}}{2 \mu}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi(x, y, z)+V(x, y, z) \psi(x, y, z)=E \psi(x, y, z)
$$

Q3) If $R(r)=u(r) / r$, consider:

$$
r^{2} \frac{d R(r)}{d r}=r^{2} \frac{d}{d r}\left(\frac{u(r)}{r}\right)=r^{2}\left(\frac{1}{r} \frac{d u}{d r}-\frac{u}{r^{2}}\right)=r \frac{d u(r)}{d r}-u(r)
$$

Then:

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R(r)}{d r}\right)=\frac{1}{r^{2}} \frac{d}{d r}\left(r \frac{d u(r)}{d r}-u(r)\right)=\frac{1}{r^{2}}\left(\frac{d u}{d r}+r \frac{d^{2} u}{d r^{2}}-\frac{d u}{d r}\right)=\frac{1}{r} \frac{d^{2} u(r)}{d r^{2}}
$$

Q4) For the proposed solution $u_{10}(r)=r e^{-r / a}$, we have:

$$
\begin{gathered}
\frac{d u}{d r}=e^{-r / a}-\frac{r}{a} e^{-r / a} \\
\frac{d^{2} u}{d r^{2}}=-\frac{1}{a} e^{-r / a}-\frac{1}{a} e^{-r / a}+\frac{r}{a^{2}} e^{-r / a}=-\frac{2}{a} e^{-r / a}+\frac{r}{a^{2}} e^{-r / a}
\end{gathered}
$$

Substituting in the radial equation for $l=0$, this is a solution if:

$$
\begin{aligned}
-\frac{d^{2} u}{d r^{2}}-\frac{2}{a r} u & =\frac{2 \mu E}{\hbar^{2}} u \\
\rightarrow \frac{2}{a} e^{-r / a}-\frac{r}{a^{2}} e^{-r / a}-\frac{2}{a r} r e^{-r / a} & =\frac{2 \mu E}{\hbar^{2}} r e^{-r / a}
\end{aligned}
$$

The first and third terms cancel out, so this is a solution with

$$
E=-\frac{\hbar^{2}}{2 \mu a^{2}}=-\frac{\hbar^{2}}{2 \mu}\left(\frac{\mu e^{2}}{4 \pi \varepsilon_{0} \hbar^{2}}\right)^{2}=-\frac{\mu}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}
$$

which agrees with the Bohr formula for $n=1$.

Q5) For the proposed solution $u_{21}(r)=r^{2} e^{-r / 2 a}$, we have:

$$
\frac{d u}{d r}=2 r e^{-r / 2 a}-\frac{r^{2}}{2 a} e^{-r / 2 a}=\left(2 r-\frac{r^{2}}{2 a}\right) e^{-r / 2 a}
$$

$$
\frac{d^{2} u}{d r^{2}}=2 e^{-r / 2 a}-\frac{r}{a} e^{-r / 2 a}-\frac{r}{a} e^{-r / 2 a}+\frac{r^{2}}{4 a^{2}} e^{-r / 2 a}=\left(2-\frac{2 r}{a}+\frac{r^{2}}{4 a^{2}}\right) e^{-r / 2 a}
$$

Substituting in the radial equation for $l=1$, this is a solution if:

$$
\begin{aligned}
-\frac{d^{2} u}{d r^{2}}+\left(-\frac{2}{a r}+\frac{2}{r^{2}}\right) u & =\frac{2 \mu E}{\hbar^{2}} u \\
\rightarrow-\left(2-\frac{2 r}{a}+\frac{r^{2}}{4 a^{2}}\right) e^{-r / 2 a}+\left(-\frac{2}{a r}+\frac{2}{r^{2}}\right) r^{2} e^{-r / 2 a} & =\frac{2 \mu E}{\hbar^{2}} r^{2} e^{-r / 2 a}
\end{aligned}
$$

The first and fifth terms, and second and fourth terms, cancel out, so this is a solution with

$$
E=-\frac{\hbar^{2}}{8 \mu a^{2}}=-\frac{\mu}{8 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}
$$

which agrees with the Bohr formula for $n=2$.

Q6) The number of distinct eigenfunctions with quantum number $n$ is $n^{2}$, so there are 9 distinct eigenfunctions with $n=3$.
Listing the possibilities, for $n=3$ we can have $l=0,1,2$ :

- For $l=0$ we can have $m=0$ ( 1 state)
- For $l=1$ we can have $m=-1,0,1$ ( 3 states)
- For $l=2$ we can have $m=-2,-1,0,1,2$ (5 states)

This makes a total of 9 possible states.

