
Quantum	Mechanics	Week	5:	Class	Prep	solutions	
	
	
Q1)	The	Bohr	formula	for	the	energy	eigenvalues	of	the	hydrogen	atom	is:	
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Q2)	The	3D	time-independent	Schrödinger	equation	is:	
	

−
ℏ"

2𝜇 '
𝜕"

𝜕𝑥" +
𝜕"

𝜕𝑦" +
𝜕"

𝜕𝑧",𝜓
(𝑥, 𝑦, 𝑧) + 𝑉(𝑥, 𝑦, 𝑧)	𝜓(𝑥, 𝑦, 𝑧) = 𝐸	𝜓(𝑥, 𝑦, 𝑧)	

	
	
Q3)	If	𝑅(𝑟) = 𝑢(𝑟)/𝑟,	consider:	
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Q4)	For	the	proposed	solution	𝑢$#(𝑟) = 𝑟𝑒%&/( ,	we	have:	
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Substituting	in	the	radial	equation	for	𝑙 = 0,	this	is	a	solution	if:	
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The	first	and	third	terms	cancel	out,	so	this	is	a	solution	with	
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which	agrees	with	the	Bohr	formula	for	𝑛 = 1.	
	
	
Q5)	For	the	proposed	solution	𝑢"$(𝑟) = 𝑟"𝑒%&/"( ,	we	have:	
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Substituting	in	the	radial	equation	for	𝑙 = 1,	this	is	a	solution	if:	
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The	first	and	fifth	terms,	and	second	and	fourth	terms,	cancel	out,	so	this	is	a	solution	
with	
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which	agrees	with	the	Bohr	formula	for	𝑛 = 2.	
	
	
Q6)	The	number	of	distinct	eigenfunctions	with	quantum	number	𝑛	is	𝑛",	so	there	are	9	
distinct	eigenfunctions	with	𝑛 = 3.	
	

Listing	the	possibilities,	for	𝑛 = 3	we	can	have	𝑙 = 0, 1, 2:	
	

• For	𝑙 = 0	we	can	have	𝑚 = 0	(1	state)	
• For	𝑙 = 1	we	can	have	𝑚 = −1, 0, 1	(3	states)	
• For	𝑙 = 2	we	can	have	𝑚 = −2,−1, 0, 1, 2	(5	states)	

	

This	makes	a	total	of	9	possible	states.	
	
	
	
	 	


