Quantum Mechanics Week 1: Class Prep solutions

Q1) The time-dependent Schrödinger equation for the wavefunction is,

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

Q2) We'll substitute in the solution for $x>0, \Psi(x, t)=N e^{-\lambda x} e^{-i \omega t}$. Differentiating this wavefunction,

$$
\frac{\partial \Psi}{\partial x}=-\lambda N e^{-\lambda x} e^{-i \omega t} \rightarrow \frac{\partial^{2} \Psi}{\partial x^{2}}=\lambda^{2} N e^{-\lambda x} e^{-i \omega t} \quad \quad \frac{\partial \Psi}{\partial t}=-i \omega N e^{-\lambda x} e^{-i \omega t}
$$

Hence this wavefunction is a solution if,

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \lambda^{2} N e^{-\lambda x} e^{-i \omega t}+V_{0} N e^{-\lambda x} e^{-i \omega t} & =i \hbar \cdot-i \omega N e^{-\lambda x} e^{-i \omega t} \\
\rightarrow-\frac{\hbar^{2}}{2 m} \lambda^{2}+V_{0} & =\hbar \omega \\
\rightarrow \lambda & =\sqrt{\frac{2 m\left(V_{0}-\hbar \omega\right)}{\hbar^{2}}}
\end{aligned}
$$

The calculation for $x<0$ is actually the same as above, so if we try this too we'll just get exactly the same result.

Q3) The modulus squared of the wavefunction is given by, for $x>0$:

$$
|\Psi(x, t)|^{2}=\Psi^{*} \Psi=N e^{-\lambda x} e^{+i \omega t} \cdot N e^{-\lambda x} e^{-i \omega t}=N^{2} e^{-2 \lambda x}
$$

For $x<0$ this is the same, just with a sign change in the exponential. Hence, this function is symmetrical about $x=0$. Hence the normalisation condition is,

$$
\begin{aligned}
\int_{-\infty}^{\infty}|\Psi|^{2} d x= & \int_{-\infty}^{0}|\Psi|^{2} d x+\int_{0}^{\infty}|\Psi|^{2} d x=N^{2} \int_{-\infty}^{0} e^{2 \lambda x} d x+N^{2} \int_{0}^{\infty} e^{-2 \lambda x} d x \\
& =2 N^{2} \int_{0}^{\infty} e^{-2 \lambda x} d x=2 N^{2}\left[\frac{e^{-2 \lambda x}}{2 \lambda}\right]_{\infty}^{0}=\frac{N^{2}}{\lambda}=1
\end{aligned}
$$

such that $N=\sqrt{\lambda}$.

Q4) The probability of the particle being located in the range $0<x<1 / \lambda$ is,

$$
\int_{0}^{1 / \lambda}|\Psi|^{2} d x=N^{2} \int_{0}^{1 / \lambda} e^{-2 \lambda x} d x=\lambda\left[\frac{e^{-2 \lambda x}}{2 \lambda}\right]_{0}^{1 / \lambda}=\frac{1}{2}\left(1-\frac{1}{e^{2}}\right)=0.43
$$

Q5) The operator-eigenfunction-eigenvalue equation is,

$$
\hat{A} \phi_{n}=a_{n} \phi_{n}
$$

Q6) Applying the operator to the proposed eigenfunction we find,

$$
\hat{A} \phi(x)=\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}=a \phi(x)
$$

Hence $e^{a x}$ is an eigenfunction of the operator $\frac{d}{d x}$ with eigenvalue a.

Q7) The 3 key properties are,

- The eigenvalues of the operators are real (zero imaginary part)
- Different eigenfunctions of the operators are orthogonal
- Any function can be expressed as a linear combination of eigenfunctions

