Quantum Mechanics Week 1: Class Prep solutions

Q1) The time-dependent Schriodinger equation for the wavefunction is,
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Q2) We'll substitute in the solution for x > 0, ¥(x,t) = Ne **e~it, Differentiating this
wavefunction,
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Hence this wavefunction is a solution if,
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The calculation for x < 0 is actually the same as above, so if we try this too we’ll just get
exactly the same result.

Q3) The modulus squared of the wavefunction is given by, for x > 0:
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For x < 0 this is the same, just with a sign change in the exponential. Hence, this
function is symmetrical about x = 0. Hence the normalisation condition is,
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such that N = V4.

Q4) The probability of the particle being located in the range 0 < x < 1/11s,
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Q5) The operator-eigenfunction-eigenvalue equation is,
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Q6) Applying the operator to the proposed eigenfunction we find,
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Hence e** is an eigenfunction of the operator = with eigenvalue a.
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Q7) The 3 key properties are,

e The eigenvalues of the operators are real (zero imaginary part)
e Different eigenfunctions of the operators are orthogonal
e Any function can be expressed as a linear combination of eigenfunctions



