
Quantum	Mechanics	Week	5:	Class	Activities	solutions	
	
	
Q1)	
	
By	matching	with	the	eigenfunctions	of	the	hydrogen	atom,	we	find	(𝑛, 𝑙, 𝑚) = (2,1,0).	
	
The	corresponding	values	of	energy,	total	angular	momentum	and	the	𝑧-component	of	
angular	momentum	are	then:	
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Q2)	
	
The	wavefunction	satisfies	the	normalisation	relation	in	spherical	polar	co-ordinates,	
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With	𝜓 = 𝑁 cos 𝜃 	𝑟	𝑒'(/"* ,	we	have	
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Q3)	
	
There	are	3	other	eigenfunctions	with	the	same	energy,	i.e.	with	𝑛 = 2.		Their	quantum	
numbers	are	(𝑛, 𝑙, 𝑚) = (2,0,0),	(2,1,1)	and	(2,1, −1).	
	
	
Q4)	The	radial	probability	density	is	given	by:	
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Q5)	The	expectation	value	can	be	found	by:	
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This	does	not	agree	with	the	answer	to	part	e),	but	this	is	fine	because	the	mean	and	
peak	of	a	function	can	be	different.	
	
	
Q6)	Substituting	𝜓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥)	𝑔(𝑦)	ℎ(𝑧)	into	the	3D	Schrödinger	equation	
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and	using	𝑉 = 0,	we	have	
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Dividing	all	terms	by	𝑓(𝑥)	𝑔(𝑦)	ℎ(𝑧),	we	find:	
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Q7)	The	solution	for	each	co-ordinate	looks	like,	for	example:	
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This	is	the	same	as	the	1D	Schrödinger	equation	for	the	infinite	potential	well,	such	that	
we	already	know	that	the	energy	eigenvalues	are	
	

𝐸1 =
𝜋"ℏ"

8𝑚𝐿"
(𝑛1")	

	

where	𝑛1	is	an	integer.		Using	these	solutions	back	in	the	solution	for	Q6	we	have,	
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Q8)	54	is	a	sum	of	3	squares	in	3	possible	ways:	
	

1" + 2" + 7" = 54	
2" + 5" + 5" = 54	
3" + 3" + 6" = 54	

	

O𝑛1 , 𝑛2 , 𝑛#P = (1,2,7)	can	be	re-arranged	in	6	possible	permutations,	and	O𝑛1 , 𝑛2 , 𝑛#P =
(2,5,5)	and	(3,3,6)	can	be	re-arranged	in	3	possible	permutations.		Listing	them	all	out:	
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1	 7	 2	
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2	 7	 1	
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7	 2	 1	
2	 5	 5	
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3	 3	 6	
3	 6	 3	
6	 3	 3	

	
	
	


