Quantum Mechanics Week 5: Class Activities solutions

Q1)
By matching with the eigenfunctions of the hydrogen atom, we find $(n, l, m)=(2,1,0)$.
The corresponding values of energy, total angular momentum and the z-component of angular momentum are then:

$$
\begin{gathered}
E=\frac{E_{1}}{n^{2}}=\frac{E_{1}}{4} \\
L^{2}=l(l+1) \hbar^{2}=2 \hbar^{2} \\
L_{z}=m \hbar=0
\end{gathered}
$$

Q2)
The wavefunction satisfies the normalisation relation in spherical polar co-ordinates,

$$
\int_{0}^{\infty} d r \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta r^{2} \sin \theta|\psi|^{2}=1
$$

With $\psi=N \cos \theta r e^{-r / 2 a}$, we have

$$
\begin{aligned}
N^{2} \int_{0}^{\infty} r^{4} e^{-\frac{r}{a}} d r \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta & =1 \\
\rightarrow N^{2} \cdot\left(a^{5} \int_{0}^{\infty} u^{4} e^{-u} d u\right) \cdot(2 \pi) \cdot\left(\left[-\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\pi}\right) & =1 \\
\rightarrow N^{2} \cdot 24 a^{5} \cdot 2 \pi \cdot \frac{2}{3} & =1 \\
\rightarrow N & =\sqrt{\frac{1}{32 \pi}} \cdot \frac{1}{a^{5 / 2}}
\end{aligned}
$$

Q3)
There are 3 other eigenfunctions with the same energy, i.e. with $n=2$. Their quantum numbers are $(n, l, m)=(2,0,0),(2,1,1)$ and $(2,1,-1)$.

Q4) The radial probability density is given by:

$$
P(r) \propto r^{2} R(r)^{2} \propto r^{4} e^{-r / a}
$$

This peaks where $\frac{d P}{d r}=0$, or $\frac{d}{d r}\left(r^{4} e^{-r / a}\right)=\left(4 r^{3}-\frac{r^{4}}{a}\right) e^{-r / a}=0$. Hence, the probability peaks where $r=4 a$.

Q5) The expectation value can be found by:

$$
\langle r\rangle=\int_{0}^{\infty} r P(r) d r=\frac{1}{24 a^{5}} \int_{0}^{\infty} r^{5} e^{-r / a} d r=\frac{1}{24} a \int_{0}^{\infty} u^{5} e^{-u} d u=5 a
$$

This does not agree with the answer to part e), but this is fine because the mean and peak of a function can be different.

Q6) Substituting $\psi(x, y, z)=f(x) g(y) h(z)$ into the 3D Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+V(x, y, z) \psi=E \psi
$$

and using $V=0$, we have

$$
-\frac{\hbar^{2}}{2 m}\left(g(y) h(z) \frac{d^{2} f(x)}{d x^{2}}+f(x) h(z) \frac{d^{2} g(y)}{d y^{2}}+f(x) g(y) \frac{d^{2} h(z)}{d z^{2}}\right)=E f(x) g(y) h(z)
$$

Dividing all terms by $f(x) g(y) h(z)$, we find:

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{f(x)} \frac{d^{2} f}{d x^{2}}+\frac{1}{g(y)} \frac{d^{2} g}{d y^{2}}+\frac{1}{h(z)} \frac{d^{2} h}{d z^{2}}\right]=E
$$

Q7) The solution for each co-ordinate looks like, for example:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{1}{f(x)} \frac{d^{2} f}{d x^{2}}=E_{x} \\
& \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2} f}{d x^{2}}=E_{x} f
\end{aligned}
$$

This is the same as the 1D Schrödinger equation for the infinite potential well, such that we already know that the energy eigenvalues are

$$
E_{x}=\frac{\pi^{2} \hbar^{2}}{8 m L^{2}}\left(n_{x}^{2}\right)
$$

where n_{x} is an integer. Using these solutions back in the solution for Q6 we have,

$$
E=E_{x}+E_{y}+E_{z}=\frac{\pi^{2} \hbar^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

Q8) 54 is a sum of 3 squares in 3 possible ways:

$$
\begin{aligned}
& 1^{2}+2^{2}+7^{2}=54 \\
& 2^{2}+5^{2}+5^{2}=54 \\
& 3^{2}+3^{2}+6^{2}=54
\end{aligned}
$$

$\left(n_{x}, n_{y}, n_{z}\right)=(1,2,7)$ can be re-arranged in 6 possible permutations, and $\left(n_{x}, n_{y}, n_{z}\right)=$ $(2,5,5)$ and $(3,3,6)$ can be re-arranged in 3 possible permutations. Listing them all out:

n_{x}	n_{y}	n_{z}
1	2	7

1	7	2
2	1	7
2	7	1
7	1	2
7	2	1
2	5	5
5	2	5
5	5	2
3	3	6
3	6	3
6	3	3

