Quantum Mechanics Week 4: Class Activities solutions

Q1)
a) The equation with $l=0$ and $m=0$ is:

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P_{00}}{d \theta}\right)=0
$$

which is satisfied if $P_{00}=1$, since $\frac{d P_{00}}{d \theta}=0$.
b) The equation with $l=1$ and $m=0$ is:

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P_{10}}{d \theta}\right)+2 P_{10}=0
$$

Substituting in $P_{10}=\cos \theta$, we find:

$$
\begin{aligned}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta} \cos \theta\right)+2 \cos \theta & =\frac{1}{\sin \theta} \frac{d}{d \theta}\left(-\sin ^{2} \theta\right)+2 \cos \theta \\
& =\frac{1}{\sin \theta}(-2 \sin \theta \cos \theta)+2 \cos \theta \\
& =0
\end{aligned}
$$

demonstrating that this form is a solution.
c) The equation with $l=1$ and $m=1$ is:

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P_{11}}{d \theta}\right)+\left[2-\frac{1}{\sin ^{2} \theta}\right] P_{11}=0
$$

Substituting in $P_{11}=-\sin \theta$, we find:

$$
\begin{aligned}
& \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}(-\sin \theta)\right)+\left[2-\frac{1}{\sin ^{2} \theta}\right](-\sin \theta) \\
& =-\frac{1}{\sin \theta} \frac{d}{d \theta}(\sin \theta \cos \theta)-2 \sin \theta+\frac{1}{\sin \theta} \\
& =-\frac{1}{\sin \theta}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-2 \sin \theta+\frac{1}{\sin \theta} \\
& =-\frac{1}{\sin \theta}\left(1-2 \sin ^{2} \theta\right)-2 \sin \theta+\frac{1}{\sin \theta} \\
& =0
\end{aligned}
$$

demonstrating that this form is a solution.
Hence, using the form $Y_{l m}(\theta, \phi)=N P_{l m}(\theta) e^{i m \phi}$, the mathematical functions for Y_{00}, Y_{10} and Y_{11} are (ignoring the normalisation constant for now):

$$
\begin{aligned}
& Y_{00} \propto 1 \\
& Y_{10} \propto \cos \theta \\
& Y_{11} \propto-\sin \theta e^{i \phi}
\end{aligned}
$$

Q2)

The " $\sin \theta$ " appears in the equation for normalising the spherical harmonic functions because it is part of the area element for integrations over a sphere. There is more area available near the equator than at the poles.
For Y_{00} :

$$
\begin{aligned}
\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta N^{2} & =1 \\
\rightarrow 2 \pi \cdot[\cos \theta]_{\pi}^{0} \cdot N^{2} & =1 \\
\rightarrow 2 \pi \cdot 2 \cdot N^{2} & =1 \\
\rightarrow N & =\frac{1}{\sqrt{4 \pi}}
\end{aligned}
$$

For Y_{10} :

$$
\begin{aligned}
\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta N^{2} \cos ^{2} \theta & =1 \\
\rightarrow 2 \pi \cdot\left[\frac{\cos ^{3} \theta}{3}\right]_{\pi}^{0} \cdot N^{2} & =1 \\
\rightarrow 2 \pi \cdot \frac{2}{3} \cdot N^{2} & =1 \\
\rightarrow N & =\sqrt{\frac{3}{4 \pi}}
\end{aligned}
$$

For Y_{11} (note the $e^{i \phi}$ cancels out in the complex conjugate):

$$
\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta N^{2} \sin ^{2} \theta=1
$$

We can solve the integral of $\sin ^{3} \theta$ over θ using the trig formula $\sin 3 \theta=3 \sin \theta-$ $4 \sin ^{3} \theta$, hence $\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta$. Integrating,

$$
\begin{aligned}
\rightarrow 2 \pi \cdot\left[\frac{3}{4} \cos \theta-\frac{1}{12} \cos 3 \theta\right]_{\pi}^{0} \cdot N^{2} & =1 \\
\rightarrow 2 \pi \cdot \frac{4}{3} \cdot N^{2} & =1 \\
\rightarrow N & =\sqrt{\frac{3}{8 \pi}}
\end{aligned}
$$

Hence the normalised version of the wavefunctions are:

$$
\begin{aligned}
& Y_{00}=\frac{1}{\sqrt{4 \pi}} \\
& Y_{10}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& Y_{11}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}
\end{aligned}
$$

To demonstrate orthogonality we consider:

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta Y_{10}(\theta, \phi) Y_{11}^{*}(\theta, \phi) \\
& \quad=\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta\left(\sqrt{\frac{3}{4 \pi}} \cos \theta\right)\left(-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}\right) \\
& =\frac{3}{\sqrt{32} \pi}\left(\int_{0}^{2 \pi} e^{-i \phi} d \phi\right)\left(\int_{0}^{\pi} d \theta \sin ^{2} \theta \cos \theta\right) \\
& =\frac{3}{\sqrt{32} \pi}\left[\frac{e^{-i \phi}}{-i}\right]_{2 \pi}^{0}\left[\frac{\sin ^{3} \theta}{3}\right]_{0}^{\pi} \\
& =\frac{3}{\sqrt{32} \pi}\left(\frac{1-1}{-i}\right)\left(\frac{0-0}{3}\right) \\
& =0
\end{aligned}
$$

Q4) Using the spherical harmonic forms given at the end of Q2, we can express this wavefunction as a sum over Y_{00}, Y_{10} and Y_{11} :

$$
\begin{aligned}
\psi(\theta, \phi) & =\frac{1}{\sqrt{4 \pi}}\left[\frac{1}{\sqrt{2}}+\cos \theta+\frac{1}{2} \sin \theta e^{i \phi}\right] \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{4 \pi}}+\frac{1}{\sqrt{4 \pi}} \cos \theta+\frac{1}{2} \frac{1}{\sqrt{4 \pi}} \sin \theta e^{i \phi} \\
& =\frac{1}{\sqrt{2}} Y_{00}+\frac{1}{\sqrt{3}} Y_{10}-\frac{1}{\sqrt{6}} Y_{11}
\end{aligned}
$$

The modulus squared of each coefficient gives the probability associated with measuring corresponding eigenvalues. These probabilities are:

Term in expansion	(l, m)	Probability
Y_{00}	$l=0, m=0$	$1 / 2$
Y_{10}	$l=1, m=0$	$1 / 3$
Y_{11}	$l=1, m=1$	$1 / 6$

The possible results of measuring L^{2} are:

- $l=0$ or $L^{2}=0$, with probability $\frac{1}{2}$
- $l=1$ or $L^{2}=2 \hbar^{2}$, with probability $\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$

The possible results of measuring L_{z} are:

- $m=0$ or $L_{z}=0$, with probability $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$
- $m=1$ or $L_{z}=\hbar$, with probability $\frac{1}{6}$

