Quantum Mechanics Week 4: Class Activities solutions

Q1)

a) The equation with l = 0 and m = 0 is:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \ \frac{dP_{00}}{d\theta} \right) = 0$$

which is satisfied if $P_{00} = 1$, since $\frac{dP_{00}}{d\theta} = 0$.

b) The equation with l = 1 and m = 0 is:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP_{10}}{d\theta} \right) + 2P_{10} = 0$$

Substituting in $P_{10} = \cos \theta$, we find:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta} \cos\theta \right) + 2\cos\theta = \frac{1}{\sin\theta} \frac{d}{d\theta} (-\sin^2\theta) + 2\cos\theta$$
$$= \frac{1}{\sin\theta} (-2\sin\theta\cos\theta) + 2\cos\theta$$
$$= 0$$

demonstrating that this form is a solution.

c) The equation with l = 1 and m = 1 is:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dP_{11}}{d\theta} \right) + \left[2 - \frac{1}{\sin^2\theta} \right] P_{11} = 0$$

Substituting in $P_{11} = -\sin\theta$, we find:

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta} (-\sin\theta) \right) + \left[2 - \frac{1}{\sin^2\theta} \right] (-\sin\theta)$$
$$= -\frac{1}{\sin\theta} \frac{d}{d\theta} (\sin\theta\cos\theta) - 2\sin\theta + \frac{1}{\sin\theta}$$
$$= -\frac{1}{\sin\theta} (\cos^2\theta - \sin^2\theta) - 2\sin\theta + \frac{1}{\sin\theta}$$
$$= -\frac{1}{\sin\theta} (1 - 2\sin^2\theta) - 2\sin\theta + \frac{1}{\sin\theta}$$
$$= 0$$

demonstrating that this form is a solution.

Hence, using the form $Y_{lm}(\theta, \phi) = N P_{lm}(\theta) e^{im\phi}$, the mathematical functions for Y_{00} , Y_{10} and Y_{11} are (ignoring the normalisation constant for now):

$$Y_{00} \propto 1$$

$$Y_{10} \propto \cos \theta$$

$$Y_{11} \propto -\sin \theta \ e^{i\phi}$$

The "sin θ " appears in the equation for normalising the spherical harmonic functions because it is part of the area element for integrations over a sphere. There is more area available near the equator than at the poles.

For *Y*₀₀:

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin \theta \ N^{2} = 1$$

$$\rightarrow 2\pi \cdot [\cos \theta]_{\pi}^{0} \cdot N^{2} = 1$$

$$\rightarrow 2\pi \cdot 2 \cdot N^{2} = 1$$

$$\rightarrow N = \frac{1}{\sqrt{4\pi}}$$

For *Y*₁₀:

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin \theta \, N^{2} \cos^{2} \theta = 1$$
$$\rightarrow 2\pi \cdot \left[\frac{\cos^{3} \theta}{3}\right]_{\pi}^{0} \cdot N^{2} = 1$$
$$\rightarrow 2\pi \cdot \frac{2}{3} \cdot N^{2} = 1$$
$$\rightarrow N = \sqrt{\frac{3}{4\pi}}$$

For Y_{11} (note the $e^{i\phi}$ cancels out in the complex conjugate):

$$\int_0^{2\pi} d\phi \int_0^{\pi} d\theta \,\sin\theta \,N^2 \sin^2\theta = 1$$

We can solve the integral of $\sin^3\theta$ over θ using the trig formula $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$, hence $\sin^3\theta = \frac{3}{4}\sin\theta - \frac{1}{4}\sin 3\theta$. Integrating,

$$\rightarrow 2\pi \cdot \left[\frac{3}{4}\cos\theta - \frac{1}{12}\cos 3\theta\right]_{\pi}^{0} \cdot N^{2} = 1 \rightarrow 2\pi \cdot \frac{4}{3} \cdot N^{2} = 1 \rightarrow N = \sqrt{\frac{3}{8\pi}}$$

Hence the normalised version of the wavefunctions are:

$$Y_{00} = \frac{1}{\sqrt{4\pi}}$$
$$Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta$$
$$Y_{11} = -\sqrt{\frac{3}{8\pi}}\sin\theta \ e^{i\phi}$$

Q2)

To demonstrate orthogonality we consider:

$$\begin{split} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \, \sin\theta \, Y_{10}(\theta, \phi) \, Y_{11}^{*}(\theta, \phi) \\ &= \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \, \sin\theta \left(\sqrt{\frac{3}{4\pi}} \cos\theta \right) \left(-\sqrt{\frac{3}{8\pi}} \sin\theta \, e^{-i\phi} \right) \\ &= \frac{3}{\sqrt{32\pi}} \left(\int_{0}^{2\pi} e^{-i\phi} \, d\phi \right) \left(\int_{0}^{\pi} d\theta \, \sin^{2}\theta \, \cos\theta \right) \\ &= \frac{3}{\sqrt{32\pi}} \left[\frac{e^{-i\phi}}{-i} \right]_{2\pi}^{0} \left[\frac{\sin^{3}\theta}{3} \right]_{0}^{\pi} \\ &= \frac{3}{\sqrt{32\pi}} \left(\frac{1-1}{-i} \right) \left(\frac{0-0}{3} \right) \\ &= 0 \end{split}$$

Q4) Using the spherical harmonic forms given at the end of Q2, we can express this wavefunction as a sum over Y_{00} , Y_{10} and Y_{11} :

$$\psi(\theta,\phi) = \frac{1}{\sqrt{4\pi}} \left[\frac{1}{\sqrt{2}} + \cos\theta + \frac{1}{2}\sin\theta e^{i\phi} \right]$$

= $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{4\pi}} + \frac{1}{\sqrt{4\pi}}\cos\theta + \frac{1}{2} \frac{1}{\sqrt{4\pi}}\sin\theta e^{i\phi}$
= $\frac{1}{\sqrt{2}} Y_{00} + \frac{1}{\sqrt{3}} Y_{10} - \frac{1}{\sqrt{6}} Y_{11}$

The modulus squared of each coefficient gives the probability associated with measuring corresponding eigenvalues. These probabilities are:

Term in expansion	(l,m)	Probability
Y ₀₀	l = 0, m = 0	1/2
Y ₁₀	l = 1, m = 0	1/3
Y ₁₁	l = 1, m = 1	1/6

The possible results of measuring L^2 are:

- l = 0 or $L^2 = 0$, with probability $\frac{1}{2}$ l = 1 or $L^2 = 2\hbar^2$, with probability $\frac{1}{3} + \frac{1}{6} = \frac{1}{2}$

The possible results of measuring L_z are:

- m = 0 or $L_z = 0$, with probability $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ m = 1 or $L_z = \hbar$, with probability $\frac{1}{6}$

Q3)