Quantum Mechanics Week 3: Class Activities solutions

Q1) In the region $|x|<L$ the potential is $V(x)=0$ and the Schrödinger equation takes the form:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi
$$

Trying the solution $\psi=A \cos k x$ we find:

$$
-\frac{\hbar^{2}}{2 m} \cdot-k^{2} A \cos k x=E \cdot A \cos k x
$$

which is hence a solution with $k^{2}=2 m E / \hbar^{2}$.

Q2) In the region $|x|>L$ the potential is $V(x)=V_{0}$ and the Schrödinger equation takes the form:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V_{0} \psi=E \psi
$$

Trying the solution $\psi=B e^{ \pm l x}$ we find:

$$
-\frac{\hbar^{2}}{2 m} \cdot l^{2} B e^{ \pm l x}+V_{0} \cdot B e^{ \pm l x}=E \cdot B e^{ \pm l x}
$$

which is hence a solution with $l^{2}=2 m\left(V_{0}-E\right) / \hbar^{2}$.

Q3) The continuity of $\psi(x)$ at $x=L$ implies:

$$
A \cos k L=B e^{-l L}
$$

where we have taken the decaying form of the exponential solution to ensure $\psi \rightarrow 0$ as $x \rightarrow \infty$, such that the wavefunction can be normalised. We note that the continuity of $\psi(x)$ at $x=-L$ results in the same equation.
The continuity of $\frac{d \psi}{d x}$ at $x=L$ implies:

$$
-k A \sin k L=-l B e^{-l L}
$$

Again, the continuity of $\frac{d \psi}{d x}$ at $x=-L$ results in the same equation.
Dividing these two equations we find:

$$
\tan k L=\frac{l}{k}
$$

Now using the expressions for k and l from above:

$$
\tan \sqrt{\frac{2 m E L^{2}}{\hbar^{2}}}=\sqrt{\frac{V_{0}}{E}-1}
$$

Q4) The wavefunction corresponding to the lowest energy state will consist of a cosine solution in the central region with the longest possible wavelength, and decaying exponentials on either side (image credit from http://hyperphysics.phyastr.gsu.edu/hbase/quantum/pfbox.html):

Q5) The continuity of $\psi(x)$ at $x=0$ implies:

$$
\begin{aligned}
\Psi_{I}(0, t)+\Psi_{R}(0, t) & =\Psi_{B}(0, t) \\
\rightarrow e^{-i \omega t}+R e^{-i \omega t} & =(A+B) e^{-i \omega t} \\
\rightarrow 1+R & =A+B \quad \text { [Eq. 1] }
\end{aligned}
$$

The continuity of $\psi(x)$ at $x=L$ implies:

$$
\begin{align*}
\Psi_{B}(x, t) & =\Psi_{T}(x, t) \\
\rightarrow\left(A e^{k L}+B e^{-k L}\right) e^{-i \omega t} & =T e^{i(k L-\omega t)} \\
\rightarrow T e^{i k L} & =A e^{k L}+B e^{-k L} \tag{Eq.2}
\end{align*}
$$

where we have used $l=k$. The continuity of $\frac{\partial \psi}{\partial x}$ at $x=0$ implies:

$$
\begin{align*}
\frac{\partial \Psi_{I}(0, t)}{\partial x}+\frac{\partial \Psi_{R}(0, t)}{\partial x} & =\frac{\partial \Psi_{B}(0, t)}{\partial x} \\
\rightarrow i k e^{-i \omega t}-i k R e^{-i \omega t} & =(k A-k B) e^{-i \omega t} \\
\rightarrow(1-R) i & =A-B \tag{Eq.3}
\end{align*}
$$

The continuity of $\frac{\partial \psi}{\partial x}$ at $x=L$ implies:

$$
\begin{align*}
\frac{\partial \Psi_{B}(0, t)}{\partial x} & =\frac{\partial \Psi_{T}(0, t)}{\partial x} \\
\rightarrow l\left(A e^{k L}-B e^{-k L}\right) e^{-i \omega t} & =i k T e^{i(k L-\omega t)} \\
\rightarrow i T e^{i k L} & =A e^{k L}-B e^{-k L} \tag{Eq.4}
\end{align*}
$$

Q6) We can now find the unknown coefficients from Eq.1-4. First we consider:

$$
\begin{array}{cc}
{\left[\text { Eq. 2] }+ \text { [Eq. 4] } \rightarrow(1+i) T e^{i k L}=2 A e^{k L}\right.} & \text { [Eq. 5] } \\
{\left[\text { Eq. 2] }-\left[\text { Eq. 4] } \rightarrow(1-i) T e^{i k L}=2 B e^{-k L}\right.\right.} & {[\text { Eq. 6] }} \tag{Eq.6}
\end{array}
$$

Dividing [Eq.5] by [Eq.6] gives:

$$
\frac{B}{A}=\left(\frac{1-i}{1+i}\right) e^{2 k L} \quad[\text { Eq. } 7]
$$

Re-arranging [Eq.5] gives:

$$
\begin{equation*}
\frac{T}{A}=\frac{2 e^{k L} e^{-i k L}}{1+i} \tag{Eq.8}
\end{equation*}
$$

Now we determine A using the other 2 equations:

$$
\begin{aligned}
\text { [Eq. 1] }- \text { [Eq. 3] } \times i & \rightarrow 2=(1-i) A+(1+i) B \\
& \rightarrow 2=(1-i) A+(1+i)\left(\frac{1-i}{1+i}\right) e^{2 k L} A \\
& \rightarrow 2=A(1-i)\left(1+e^{2 k L}\right) \\
\rightarrow A & =\frac{2}{(1-i)\left(1+e^{2 k L}\right)}
\end{aligned}
$$

Now we find T using [Eq.8]:

$$
T=\frac{2 e^{k L} e^{-i k L}}{1+i} \cdot \frac{2}{(1-i)\left(1+e^{2 k L}\right)}=\frac{2 e^{-i k L}}{e^{k L}+e^{-k L}}
$$

which leads to:

$$
|T|^{2}=\frac{4}{\left(e^{k L}+e^{-k L}\right)^{2}}
$$

