Quantum Mechanics Week 2: Class Activities

We'll go through these activities in Wednesday's Week 2 Quantum Mechanics tutorial.

Warm-up discussion

- What's this uncertainty principle - conceptually and mathematically?
- How can quantum mechanics be both deterministic and uncertain?

Making momentum measurements

1) A particle in an infinite potential well has the same wavefunction as in the Week 1 class,

$$
\psi(x)=\frac{2}{\sqrt{5 L}} \sin \left(\frac{\pi x}{L}\right)\left[1+\cos \left(\frac{\pi x}{L}\right)\right]
$$

defined in the range $|x|<L$. By expressing the wavefunction as a sum of momentum eigenfunctions, determine what momentum values can be measured, and with what probabilities? [Hint: you can use the formulae $\sin x=\left(e^{i x}-e^{-i x}\right) / 2 i$ and $\cos x=\left(e^{i x}+e^{-i x}\right) / 2$ and compare the result with the momentum eigenfunctions.]
2) Using these results, determine the expectation value of a momentum measurement of this particle.

Time-evolution of the wavefunction

3) At time $t=0$, a particle in an infinite potential well has the same wavefunction as in Q1,

$$
\Psi(x, 0)=\frac{2}{\sqrt{5 L}} \sin \left(\frac{\pi x}{L}\right)\left[1+\cos \left(\frac{\pi x}{L}\right)\right]
$$

By using the expression of this function as a combination of energy eigenfunctions from the Week 1 class, write down the wavefunction of the particle $\Psi(x, t)$ at time t.
4) Use the definition of an expectation value of energy, $\langle E\rangle=\int_{-\infty}^{\infty} \Psi^{*} \widehat{H} \Psi d x$, to show that the expectation value of energy for this particle remains constant with time. [Hint: you can substitute in the result of Q3 and use the fact that the energy eigenfunctions are orthogonal.]

If you have time and want to try something ...

5) Consider a particle in the ground state of an infinite potential well, with wavefunction $\psi(x)=$ $\frac{1}{\sqrt{L}} \cos \left(\frac{\pi x}{2 L}\right)$ defined in the range $|x|<L$. Find the values of $\left\langle x^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$ (the expectation values of the position squared, and momentum squared). Use these results to determine $\sqrt{\left\langle x^{2}\right\rangle\left\langle p^{2}\right\rangle}$, and compare your result to the uncertainty principle. [Hint: You may use the integral $\int u^{2} \cos ^{2} u d u=\frac{1}{6} u^{3}+$ $\frac{1}{4} u^{2} \sin 2 u+\frac{1}{4} u \cos 2 u-\frac{1}{8} \sin 2 u+C$.]

The rest of this week's activities

Please complete the Week 2 Online Quiz (10 multiple choice questions) by the end of Sunday. Each Online Quiz represents 1% of the unit grade.

Assignment 2: You can now solve Q1(c), Q1(d), Q2(c) and Q2(d) in Assignment 1 (which is due at the end of Friday Week 3).

