General Relativity Problem Set 3 (Classes 5-7)

Metrics and Geodesics

In this week's homework we will practise using metrics in different co-ordinate systems, and solving for the geodesics in a given metric. To keep things (relatively!) simple, we will restrict ourselves to 2 dimensions.

Consider a parabolic co-ordinate system in 2D space, (p, q). The transformation functions from ordinary Cartesian (x, y) co-ordinates to these parabolic co-ordinates are:

$$
\begin{gathered}
p=x \\
q=y-x^{2}
\end{gathered}
$$

The (p, q) co-ordinate system is just another way - admittedly, quite a strange way! - to create a co-ordinate grid in 2 dimensions. Here is a plot of the (p, q) co-ordinate grid - i.e. lines of constant p and q - in the Cartesian (x, y) frame:

a) The metric in the Cartesian space is $d s^{2}=d x^{2}+d y^{2}$, or $g_{\alpha \beta}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Use the transformation $g^{\prime}{ }_{\mu \nu}=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} g_{\alpha \beta}$ to show that the metric for the (p, q) coordinates is:

$$
g^{\prime}{ }_{\mu \nu}=\left(\begin{array}{cc}
1+4 p^{2} & 2 p \\
2 p & 1
\end{array}\right)
$$

b) A vector \vec{A} has components in (p, q) co-ordinates, $A^{p}=1, A^{q}=0$. What are its components in (x, y) co-ordinates?
c) Show that the length of the vector \vec{A} in the previous part - that is, $A_{\mu} A^{\mu}$ - has the same value in both co-ordinate systems.

Let's now determine an equation for the geodesics - that is, the lines of shortest separation between two points - in (p, q) co-ordinates. Geodesics $x^{\mu}(s)$ in any co-ordinate system always satisfy the equation,

$$
g_{\mu \nu} \frac{d^{2} x^{\nu}}{d s^{2}}+\left(\partial_{\lambda} g_{\mu \kappa}-\frac{1}{2} \partial_{\mu} g_{\kappa \lambda}\right) \frac{d x^{\kappa}}{d s} \frac{d x^{\lambda}}{d s}=0
$$

d) Show that the $\mu=p$ equation becomes:

$$
\left(1+4 p^{2}\right) \frac{d^{2} p}{d s^{2}}+2 p \frac{d^{2} q}{d s^{2}}+4 p\left(\frac{d p}{d s}\right)^{2}=0
$$

and the $\mu=q$ equation becomes:

$$
2 p \frac{d^{2} p}{d s^{2}}+\frac{d^{2} q}{d s^{2}}+2\left(\frac{d p}{d s}\right)^{2}=0
$$

Hence, by combining the above two equations, show that the geodesics must satisfy

$$
\frac{d^{2} p}{d s^{2}}=0
$$

e) Use the result for part d) to derive the general form of the geodesics, $p(s)$ and $q(s)$.
f) Use the result for part e) to obtain the geodesics in Cartesian (x, y) co-ordinates, and explain why this allows you to check your solution.
g) If $x^{\mu}(s)$ is a geodesic, then the Christoffel symbols are defined by:

$$
\frac{d^{2} x^{\mu}}{d s^{2}}+\Gamma_{\kappa \lambda}^{\mu} \frac{d x^{\kappa}}{d s} \frac{d x^{\lambda}}{d s}=0
$$

By comparison of this equation and the formulae in part d), write down any non-zero Christoffel symbols for the (p, q) co-ordinates.

