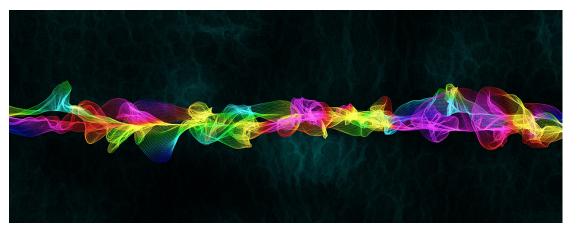

PHY20004 Particle Physics Class 5: Discoveries and Puzzles

In this class we'll summarise some recent, important discoveries in particle physics, and the outstanding mysteries of the standard model

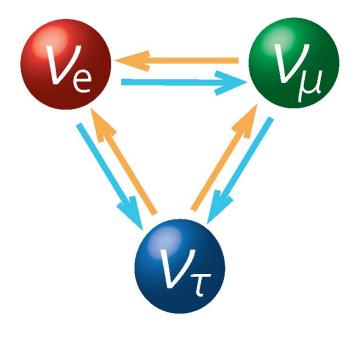
The Higgs boson ...


• The discovery of the **Higgs boson** in 2012, by the ATLAS and CMS experiments at LHC, is celebrated as one of the most important recent discoveries in physics. *Why is this? And how does the Higgs fit into the standard model we've been describing?*

- The Higgs bosons produced in
 LHC collisions decay in ~10⁻²² s,
 so we can only observe the decay
 products, not the boson itself
- Here we are seeing one of these possible decays, into a pair of photons, causing a small increase in the background event rate
- The sum of energies tells us the Higgs mass, ≈ 125 GeV!

... or rather the Higgs field!

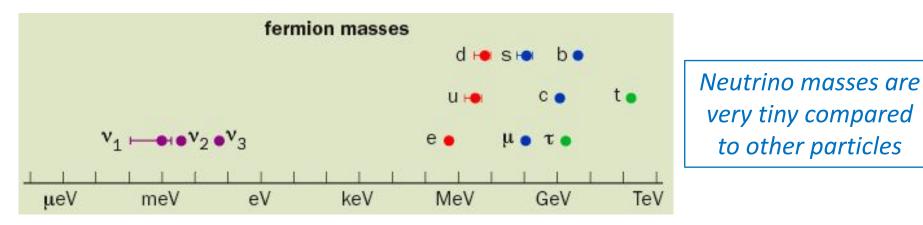
- What's important here is not the Higgs boson itself, but rather the associated **Higgs field**
- Let's back up ... what is a (quantum) field?
 - A continuous fluid-like entity present everywhere in space and time
 - If the field is non-zero somewhere, it can cause physical effects
 - The field contains waves, and these waves are made up of particles; an individual particle is the least intense possible wave


In the quantum field theory which describes the fundamental interactions, particles are considered as ripples or excitations in a field

... or rather the Higgs field!

- What's the Higgs field in particular?
 - It's a quantum field which has a non-zero value everywhere in space
 - Elementary particles such as leptons, quarks, and W and Z bosons acquire their property of mass through interaction with the Higgs field (the stronger the interaction, the greater the mass)
 - The Higgs field is our best current explanation of why particles acquire mass, and hence (in a sense) why our world exists!
 - Not all particles acquire all their mass from the Higgs interaction:
 e.g. protons & neutrons (binding energy), or the Higgs boson itself!
- Why the big deal about the Higgs boson?
 - The Higgs boson corresponds to excitations of the Higgs field its discovery confirms this field exists, and allows us to study the field

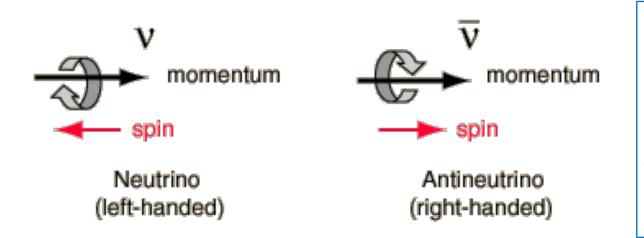
Neutrino oscillations


- If a beam of neutrinos of one flavour (electron, muon, tau) is created then, after the beam has propagated a certain distance, other flavours start appearing!
- This can be deduced from observations of **solar neutrinos** and in laboratory neutrino experiments

- The solar neutrino problem was a longstanding discrepancy between the neutrino flux predicted to arrive from the Sun, and that measured directly
- The flavour of the electron neutrinos produced in the Sun change during propagation to a mixture of electron, muon and tau neutrinos, with a reduced chance of being detected

Neutrino oscillations

- This strange behaviour can only be explained if neutrinos have a **tiny but non-zero mass** (not predicted by the standard model!)
 - More precisely: there are 3 neutrino masses, and each neutrino flavour exists as a (quantum) mixing of these mass states, which oscillate by quantum theory. We do not yet understand these mixings!

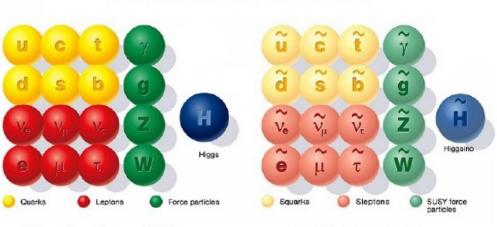


Credit: http://hitoshi.berkeley.edu /neutrino/neutrino4.html

• Since neutrinos are a very abundant particle (second only to photons), this tiny mass affects the expansion of the Universe!

Neutrinos and their spin

- Particles possess a quantum property known as spin fermions, such as the elementary particles, may be found in either of two possible spin states (this is the meaning of "spin-¹/₂")
- Neutrinos are unusual because their spin is always aligned opposite to their momentum ("left-handed"), and the reverse is true for anti-neutrinos ("right-handed")



The mystery of "why are there no right-handed neutrinos" remains unsolved and reflects fundamental questions regarding **matterantimatter asymmetry**

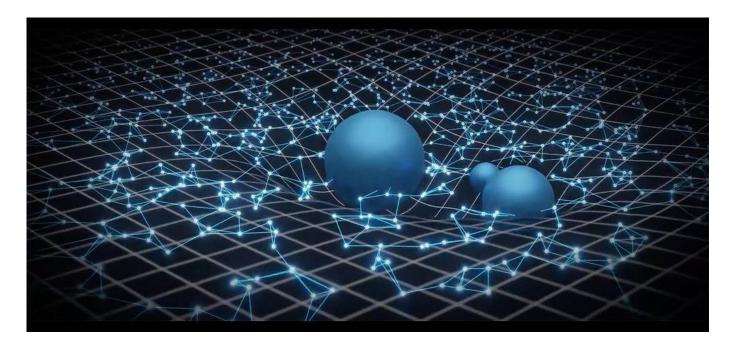
Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/neutrino3.html

Supersymmetry

- **Supersymmetry** (SUSY) is a conjecture in which every fundamental particle has an **associated massive partner**
 - A key aspect is that the partner *differs by a half-integer in spin*, such that a fermion partners to a boson, and vice versa
 - Supersymmetry solves the *hierarchy problem*, which questions the huge discrepancy in the sizes of the fundamental forces

SUSY particles

Standard particles


No supersymmetric particles have yet been detected, but the search continues! An interesting idea is that the mysterious **dark matter** inferred from astronomical observations may be a SUSY particle

Credit: https://www.quantamagazine.org

SUPERSYMMETRY

How does gravity fit in?

- Gravity is the only fundamental interaction which as yet cannot be described by a quantum field theory – our leading theory, general relativity, is instead a geometrical theory
- Do gravitons (the carrier particles for gravity) exist? If not, how can we reconcile gravity with the other fundamental forces?

Remaining questions!

- The standard model still contains many unanswered questions for current and future researchers!
 - Why are there so many input parameters to the standard model?
 - Why are there three generations of leptons and quarks?
 - Why is the neutrino mass so much smaller than the quark mass?
 - Why are the charges of the electron and proton identical?
 - What is responsible for the asymmetry between matter and anti-matter?
 - How can we include gravity in this picture?