PHY20004 Particle Physics Class 3: Conservation Laws

In this class we will study the conservation laws that determine which types of particle decays and reactions are allowed, and which are forbidden

Spontaneous particle decay

- Although a few sub-atomic particles can live forever (e.g. electron, proton), most exist in an **unstable state**
- Unstable particles decay spontaneously into related configurations of particles in a lower energy state

A canonical example is β -decay, in which a neutron transforms into a proton, electron and anti-neutrino

Credit: https://en.wikipedia.org/wiki/Beta_decay

Particle reactions/collisions

• Likewise, when two particles **"collide"** or **react** they can reconfigure into combinations of other particles

Example: particles and antiparticles can "annihilate" into photons

Example: when hydrogen atoms are bombarded by a beam of energetic particles, many new particles are created!

Energy and momentum conservation

- Particle decays or reactions must satisfy certain conservation laws – some transformations are allowed, and others are not
- To start with, decays must conserve energy, momentum and charge – e.g. a particle cannot decay to a higher-energy state (unless energy is taken from somewhere else)
- For example, a single (free) photon cannot transform into an electron and positron, since momentum cannot be conserved

(This decay is not possible because it violates conservation of momentum: to see why, imagine viewing it from the centre-of-mass frame of the electron and positron)

Baryon number conservation

• What are some other conservation laws? A neutron can decay into a proton, but a neutron never decays into an electron and positron:

This reaction would satisfy energy, momentum and charge conservation, but it never happens ... why not?

This reaction violates conservation of baryon number

Particle	Baryon number
Baryons	+1
Anti-baryons	-1
Other particles	0

The baryon number before the above reaction is +1, and the baryon number afterwards is 0, which breaks baryon number conservation

Lepton number conservation

Each generation of lepton (electron, muon, tau) also has an associated lepton number which is conserved

Particle	Symbol	Electron lepton number	Muon lepton number	Tau lepton number
Electron	<i>e</i> ⁻	+1	0	0
Electron neutrino	ν_e	+1	0	0
Positron	e^+	-1	0	0
Electron anti-neutrino	$\bar{\nu}_e$	-1	0	0
Muon	μ^-	0	+1	0
Muon neutrino	$ u_{\mu}$	0	+1	0
Tau	τ-	0	0	+1
Tau neutrino	$ u_{ au}$	0	0	+1
Quarks / hadrons		0	0	0

(Muons and taus have anti-particles which have negative muon/tau number)

Lepton number conservation

• For example, β^- -decay $n \rightarrow p + e^- + \bar{\nu}_e$ produces an **electron anti-neutrino** in order to conserve electron lepton number

• However, the hypothetical decay of the negatively-charged pion $\pi^- \rightarrow \mu^- + \nu_\mu + \bar{\nu}_\mu$ cannot occur

The muon lepton number is 0 before, and $+1 (\mu^{-}) - 1 (\bar{\nu}_{\mu})$ $+ 1 (\nu_{\mu}) = +1$ afterwards, so this decay is not allowed

Quark number conservation

- In strong and electromagnetic interactions, the numbers of each quark flavour are separately conserved (i.e. quarks & anti-quarks are created/destroyed in pairs)
- In weak interactions, quark flavour can change and only baryon number is conserved (an example of this is β-decay, where a down quark becomes an up quark)

Strangeness

- An example of tracking quark numbers is the property of strangeness (we can do the same for other other flavours too)
- E.g. the Ω^- baryon contains 3 strange quarks so has a strangeness of -3 !
- The strangeness can change in a weak interaction, but not in a strong or electromagnetic interaction

Particle	Strangeness	
Each strange quark	-1	
Each strange antiquark	+1	
All other particles	0	

The decay of a kaon ($u\bar{s}$) into pions ($u\bar{d}$, $\bar{u}d$) via the weak interaction $K^+ \overset{u}{\overline{s}} \underbrace{\qquad}_{W^+} \overset{u}{g} \overset{u}{\overline{d}} \pi^+$

Quark flow diagrams

 Transformations like these may be represented by quark flow diagrams (simpler version of a Feynman diagram)

Key take-aways

- Particles may undergo transformations into other particles through spontaneous decays or reactions/collisions
- These processes must satisfy various conservation laws
- Energy, momentum, charge, baryon number and lepton numbers are always conserved
- Quark numbers (e.g. strangeness) are conserved in electromagnetic and strong interactions, but not necessarily in weak interactions
- Reactions may be represented by **quark flow diagrams**