PHY20004 Particle Physics Class 2: The Fundamental Forces

In this class we will introduce the fundamental interactions between the elementary particles: the electromagnetic, weak, strong and gravitational forces

What are fundamental forces?

• Elementary particles interact through the **fundamental forces**: the electromagnetic, weak, strong and gravitational forces

Credit: http://hyperphysics.phy-astr.gsu.edu

Forces in particle physics

- In classical physics, forces are described as direct interactions between objects
- Newton didn't like it!

Forces in particle physics

- In modern particle physics, objects interact by exchanging particles known as force carriers
- A typical analogy is people sitting in wheely-chairs throwing a ball ...

• The "force" is the net result of all the particle exchanges

Summary of force carriers

• The following table summarises these different force carrier particles: **photons**, *W* and *Z* bosons, and gluons!

Force	Particles Experiencing	Force Carrier Particle	Range	Relative Strength*
Gravity acts between objects with mass	all particles with mass	graviton (not yet observed)	infinity	much weaker
Weak Force governs particle decay	quarks and leptons	W⁺, W⁻, Zº (W and Z)	short range	
Electromagnetism acts between electrically charged particles	electrically charged	γ (photon)	infinity	¥
Strong Force** binds quarks together	quarks and gluons	g (gluon)	short range	much stronger

Fundamental Force Particles

 All the force-carrier particles are **bosons** – you will sometimes see them called "gauge bosons"

Virtual particles

- The process of producing a carrier particle violates energy and momentum conservation. However, this is permissible for a short time owing to the uncertainty principle $\Delta E \Delta t \sim \hbar$
- For this reason, force carriers are known as "virtual particles". The implication is they do not need to satisfy the usual massenergy-momentum relation, $E^2 = p^2c^2 + m^2c^4$
- To make a real process, two virtual processes are combined such that *energy conservation is only violated for a short amount of time*
- The uncertainty principle time-scale sets the range of the force for a carrier particle of mass $m: R \sim c \Delta t \sim \frac{\hbar c}{\Delta E} \sim \frac{\hbar}{mc}$

Force or interaction?

- On the particle scale it can be easier to think in terms of an **interaction** between particles, rather than a **force**
- The Newtonian idea of an action-and-reaction pair of forces does **not** clearly apply in many sub-atomic cases

Credit: https://xkcd.com/1489/

The electromagnetic interaction

- The electromagnetic interaction acts between charged particles
- The carrier particle for the electromagnetic interaction is the (virtual) photon
- Photons have zero mass, and therefore the electromagnetic interaction has infinite range
- As a long-range interaction, the electromagnetic force is responsible for all everyday macroscopic properties

(The kind of picture below is called a Feynman diagram)

Credit: https://courses.lumenlearning.com

The weak interaction

- The weak interaction can occur between all particles, but is generally negligible compared to other forces
- It's most significant for neutrinos, because these only feel the weak interaction
- The weak interaction is carried by the W⁺, W⁻ and Z⁰ particles
- The W and Z particles are very massive, hence the weak force is very **short-range** ($\sim 10^{-18}$ m)

The weak interaction mediates β decay, through which a down quark becomes an up quark, producing an electron and anti-neutrino:

The strong interaction

- The strong interaction operates between quarks (and therefore hadrons) and is responsible for holding the nucleus together
- The carrier particles for the strong interaction are called gluons
- Gluons have zero mass so the strong interaction would in principle have infinite range, but in practice it's confined to the nucleus (we won't go into this here!)

Unification of the forces

- Physics aims to unify seemingly different phenomena for example, electricity and magnetism. Can the fundamental forces be unified? – the answer so far is, *yes, partially*
- The electromagnetic and weak interactions become the "electroweak" interaction above a certain energy (~100 GeV)

However a "grand unified theory" for the electroweak and strong interactions is not yet known. We also don't know how gravity fits in!

Credit: https://courses.lumenlearning.com

What's in a physics theory?

• What about the equations that govern the fundamental interactions? We are in the domain of *relativistic physics* on a microscopic scale, so **quantum field theory** applies

 The quantum theory of the electromagnetic interaction is called Quantum Electrodynamics (QED), and the theory of the strong interaction is Quantum Chromodynamics (QCD)

The standard model

• The standard model of particle physics unifies our picture of the fundamental particles and interactions, categorising them in as simple a manner as possible

Key take-aways

- There are four fundamental forces or interactions in nature: the **electromagnetic**, **weak**, **strong** and **gravitational**
- Fundamental interactions involve the exchange of carrier particles: photons, W and Z bosons, and gluons!
- Force carriers are **virtual particles** which violate energymomentum conservation. They therefore only exist for a short amount of time, which sets the range of the force
- The EM, weak and strong interactions act between charged particles, all particles and quarks, respectively
- Fundamentally, these interactions are modelled as a quantum field theory (QED, QCD)