
PHY20004 Particle Physics Class 1: The Particle Zoo

In this class we will introduce the elementary particles – the leptons and quarks – and their key properties

What are elementary particles?

- Elementary particles are the fundamental constituents, or basic building blocks, of matter
- They are **point-like** particles with no internal structure or excited states

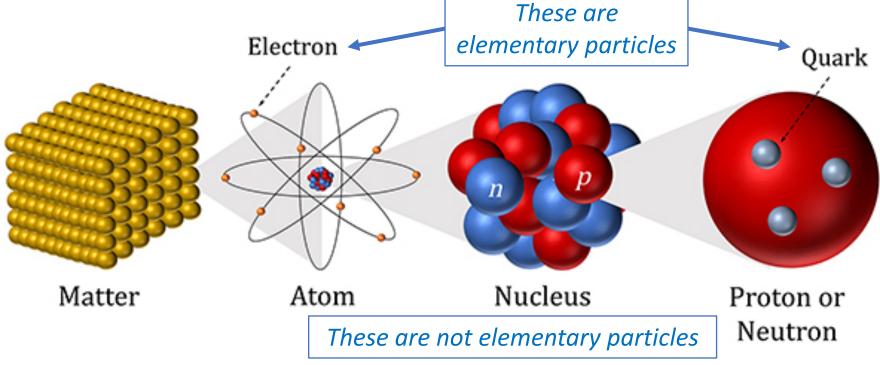


Image credit: https://iopscience.iop.org/book/978-1-6432-7034-0

Introducing leptons and quarks

- There are two types of elementary particles which constitute matter **leptons** and **quarks**
- Almost all everyday phenomena can be described by the interactions of *just four* of these particles: the electron, the neutrino, the "up" quark and the "down" quark

Particle	Symbol	Туре	Charge [e]	Mass [MeV/ c^2]			
electron	e ⁻	lepton	-1	0.511	Difficult to measure		
neutrino	ν _e	lepton	0	≈ 0			
up quark	u	quark	$^{2}/_{3}$	≈ 2.2	since no free		
down quark	d	quark	- ¹ / ₃	≈ 4.7	quarks!		

• The **proton** (*uud*) and **neutron** (*udd*) are the lowest energy states of combinations of three quarks

Particles: the next generation

- Unfortunately, the Universe is not that simple!
- We have discovered a total of three generations of leptons and quarks
- Each generation is a replica of these first four particles, featuring new particles of increasing mass
- The origin of these three generations is still a mystery

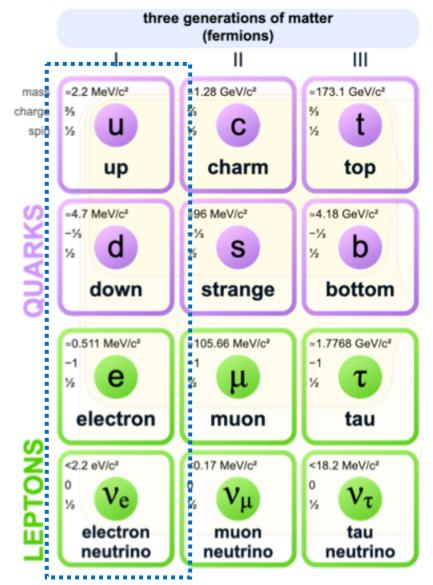
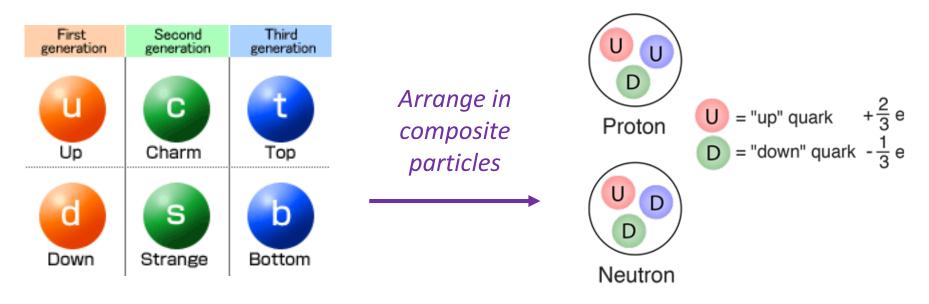
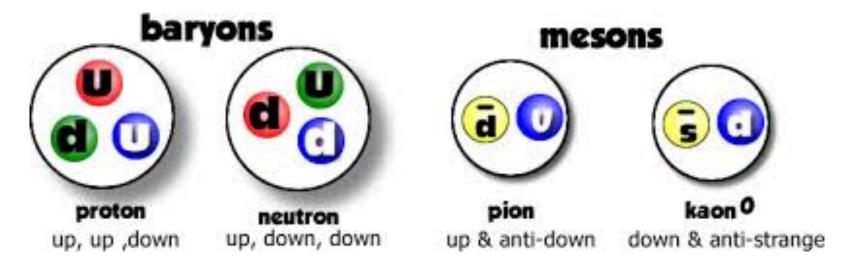


Image credit: https://scienceready.com.au/


Leptons and their properties

- Leptons are point-like particles which do not undergo strong interactions (we'll find out more about this soon!)
- The **electron**, **muon** and **tau** particles are the *charged leptons*
- Their corresponding neutrinos are neutral leptons, which are (almost) massless and only interact weakly


Quarks and their properties

- Let's look more closely at the key properties of **quarks**:
 - There are **six quark flavours** (up, down, charm, strange, top, bottom)
 - Quarks have fractional charge (which is weird) however...
 - Quarks are never observed singly (apart from in the early Universe)
 - Quarks are confined in composite particles called hadrons

The hadron family

• Hadrons are composite particles made up of quarks. They come in two types: **baryons** and **mesons**

- Baryons are bound systems of three quarks or three antiquarks (examples are protons and neutrons)
- Mesons are bound systems of a quark and anti-quark (examples are pions and kaons)

The hadron family

• There are hundreds of different hadrons, for example:

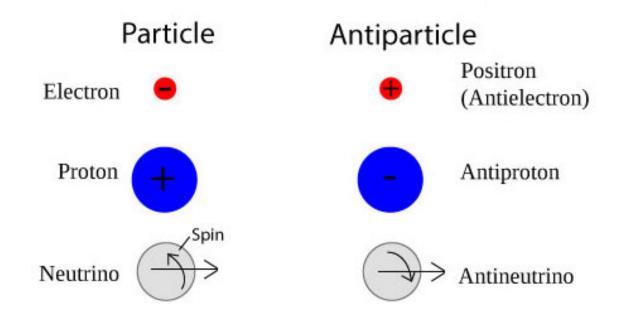

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.				Mesons qq Mesons are bosonic hadrons. There are about 140 types of mesons.								
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2		π^+	pion	ud	+1	0.140	0
p	anti- proton	$\overline{u}\overline{u}\overline{d}$	-1	0.938	1/2		K⁻	kaon	sū	-1	0.494	0
p p n	neutron	udd	0	0.940	1/2		$ ho^+$	rho	ud	+1	0.770	1
Λ	lambda	uds	0	1.116	1/2		В ⁰	B-zero	db	0	5.279	0
Ω-	omega	SSS	-1	1.672	3/2		η_{c}	eta-c	ςΣ	0	2 .980	0

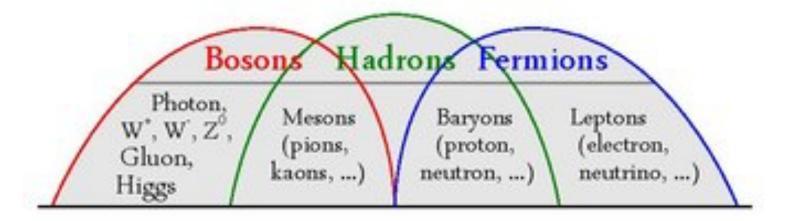
Image credit: fden-2.phys.uaf.edu

The LHC has now discovered tetraquarks and pentaquarks!

Particles and anti-particles

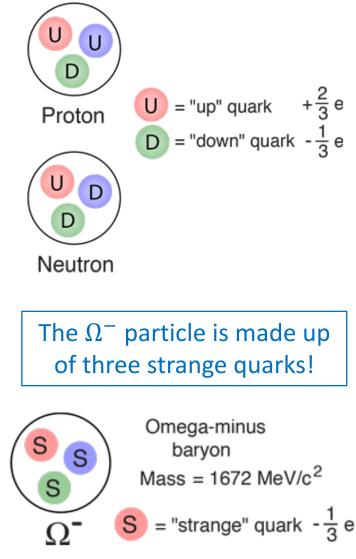
• Each type of particle has an associated **anti-particle** with **opposite charge** but otherwise identical properties, e.g., the anti-particle of the electron (e^-) is the positron (e^+)

Anti-particles are a consequence of relativity and quantum mechanics


Fermions and bosons

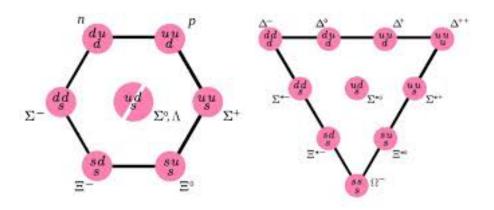
- In addition to properties such as mass and charge, particles also have a quantum-mechanical property known as **spin**
- Spin can either have integer values (like 0, 1, 2, ...) or half-integer values (like ¹/₂, ³/₂, ⁵/₂, ...)
- Particles with half-integer spin values are called **fermions** and particles with integer spin values are called **bosons**
- The key difference between fermions and bosons is that fermions obey the Pauli exclusion principle:

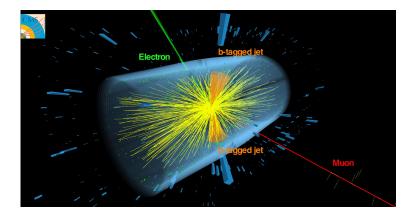
Two fermions cannot exist in the same location in the same quantum state


Fermions and bosons

- The elementary particles of matter (leptons & quarks) are all spin-¹/₂ fermions
- For composites of elementary particles, spins combine such that **baryons are fermions** (3 spin- $\frac{1}{2}$ quarks \rightarrow half-integer spin), and **mesons are bosons** (2 spin- $\frac{1}{2}$ quarks \rightarrow integer spin)
- The carrier particles of the fundamental interactions (we'll meet those in the next class!) are all **spin-1 bosons**

Quark colour


- Given that quarks are fermions, it seems that protons and neutrons cannot exist! – the presence of 2 identical quarks would violate the Pauli exclusion principle?
- Quarks come in 3 colours (blue, red, green) – which is how they avoid violating the Pauli exclusion principle
- All hadrons have net zero colour (i.e. all 3 colours are present in equal amounts)


Experimental evidence for quarks

• There are many pieces of experimental evidence for quarks, which we'll discuss in more detail later ...

The regularities in the properties of the lightest hadrons

The proton & neutron are not point-like (magnetic moment, scattering) Hadron jets produced by electron-positron and proton-proton collisions

Observations of quark-antiquark bound states after electron-positron collisions (e.g. charmonium)

Key take-aways

- The fundamental constituents of matter are three generations of leptons and quarks
- Quarks are confined in hadrons: groups of 3 quarks (baryons) or quark-antiquark pairs (mesons)
- Particles are classified as fermions or bosons depending on a quantum property called spin. Fermions obey the Pauli exclusion principle
- All particles have anti-particles, with the same properties but opposite charge
- Quarks come in 3 different colours, arranged such that all hadrons have net zero colour