Cosmology with the SKA

Chris Blake (Swinburne)
Our current model of cosmology

- We have a superbly detailed picture of the **early Universe** [e.g. CMB, nucleosynthesis]

- We have a model for the **evolution of the Universe** that matches a range of cosmological data

- This model invokes 3 new pieces of physics: **inflation**, **dark matter** and **dark energy**
Dark energy: is it vacuum energy?

A cosmological constant matches the data so far, but its amplitude is inexplicable.
Cosmology: the optimistic viewpoint!

- Dark matter and energy show that our understanding of physics is incomplete.

- Astronomy can provide fundamental physical insights into quantum theory, gravity, and particle physics.

- We are working in the breakthrough era where new data should be revolutionary!
Large-scale structure

- **Geometrical information**
 (e.g. baryon acoustic oscillations)

- **Gravitational information**
 (e.g. redshift-space distortions)

- **Primordial information**
 (e.g. shape of large-scale power spectrum)
Cosmology with the SKA

C.A. Blakea, F.B. Abdallab, S.L. Bridlec, S. Rawlingsb

aSchool of Physics, University of New South Wales, Sydney, NSW 2052, Australia
bAstrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK
cDepartment of Physics and Astronomy, University College London, London, WC1E 6BT, UK

We argue that the Square Kilometre Array has the potential to make both redshift (HI) surveys and radio continuum surveys that will \underline{revolutionize} cosmological studies, provided that it has sufficient instantaneous field-of-view that these surveys can cover a hemisphere \((f_{\text{sky}} \sim 0.5)\) in a timescale \(\sim 1\) yr. Adopting this assumption, we focus on two key experiments which will yield fundamental new measurements in cosmology, characterizing the properties of the mysterious dark energy which dominates the dynamics of today’s Universe. Experiment I will map out \(\sim 10^3(f_{\text{sky}}/0.5)\) HI galaxies to redshift \(z \approx 1.5\), providing the premier measurement of the clustering power spectrum of galaxies: accurately delineating the acoustic oscillations and the ‘turnover’. Experiment II will quantify the cosmic shear distortion of \(\sim 10^{10}(f_{\text{sky}}/0.5)\) radio continuum sources, determining a precise power spectrum of the dark matter, and its growth as a function of cosmic epoch. We contrast the performance of the SKA in precision cosmology with that of other facilities which will, probably or possibly, be available on a similar timescale. We conclude that data from the SKA will yield transformational science as the direct result of four key features: (i) the immense cosmic volumes probed, exceeding future optical redshift surveys by more than an order of magnitude; (ii) well-controlled systematic effects such as the narrow ‘k-space window function’ for Experiment I and the accurately-known ‘point-spread function’ (synthesized beam) for Experiment II; (iii) the ability to measure with high precision large-scale modes in the clustering power spectra, for which nuisance effects such as non-linear structure growth, peculiar velocities and ‘galaxy bias’ are minimised; and (iv) different degeneracies between key parameters to those which are inherent in the Cosmic Microwave Background.
The new frontier of cosmology will be led by three-dimensional surveys of the large-scale structure of the Universe. Based on its all-sky surveys and redshift depth, the SKA is destined to revolutionize cosmology, in combination with future optical/infrared surveys such as Euclid and LSST. Furthermore, we will not have to wait for the full deployment of the SKA in order to see transformational science. In the first phase of deployment (SKA1), all-sky HI intensity mapping surveys and all-sky continuum surveys are forecast to be at the forefront on the major questions of cosmology. We give a broad overview of the major contributions predicted for the SKA. The SKA will not only deliver precision cosmology – it will also probe the foundations of the standard model and open the door to new discoveries on large-scale features of the Universe.
Cosmology with the SKA

- Use HI intensity mapping to measure large-scale structure across large volumes to high redshift

- Test cosmology with cross-correlations of the radio continuum survey with CMB and optical surveys

- Measure weak gravitational lensing in radio continuum observations using new techniques

- Constrain primordial non-Gaussianity using the largest-scale modes
Upcoming optical surveys

Large Synoptic Survey Telescope (LSST)

Dark Energy Spectroscopic Instrument (DESI)

Euclid
HI intensity mapping

- 21 cm surveys which do not detect individual galaxies but the integrated emission in each pixel of a datacube

Chang et al. (2008)
Masui et al. (2013)
HI intensity mapping

- Great potential owing to the volume probed!

BAO distance/expansion measurements:

- SKA1-SUR B1 (IM)
- SKA1-SUR B2 (IM)
- SKA1-MID B1 (IM)
- SKA1-MID B2 (IM)
- SKA1 (gal.)
- SKA2 (gal.)
- Euclid (gal.)

Dark energy measurements:

- SKA1-MID B1 (IM)
- SKA1-SUR B1 (IM)
- SKA2 (gal.)
- Euclid (gal.)

Bull et al. (2014)
The dark energy puzzle

HI intensity mapping

- Challenges: enormous foreground subtraction problem, including polarization leakage

See Laura’s talk ...

- Need realistic simulations!
Continuum surveys: cross-correlations

- Radio continuum surveys trace a high-z density map
- Expect correlations with CMB (late-time ISW effect and lensing) and low-z galaxies (magnification)

Planck collaboration (2013)
Continuum surveys: late-time ISW effect

- Cross-correlation between the NVSS and CMB

Nolta et al. (2004)
Ho et al. (2008)
Giannantonio et al. (2013)

<table>
<thead>
<tr>
<th>Catalogue</th>
<th>$A \pm \sigma_A$</th>
<th>S/N</th>
<th>expected S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MASS cut</td>
<td>1.40 ± 2.09</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>SDSS gal DR8</td>
<td>1.24 ± 0.57</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>SDSS LRG DR7</td>
<td>2.10 ± 0.84</td>
<td>2.5</td>
<td>1.2</td>
</tr>
<tr>
<td>NVSS</td>
<td>1.21 ± 0.43</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>HEAO</td>
<td>1.37 ± 0.56</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>SDSS QSO DR6</td>
<td>1.43 ± 0.62</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.38 ± 0.32</td>
<td>4.4 ± 0.4</td>
<td>≈ 3.1, < 7.6</td>
</tr>
</tbody>
</table>
Continuum surveys: late-time ISW effect

- Physical evidence for dark energy
 - Granett et al. (2008)
 - de Putter et al. (2010)
- Problem: limited precision
Continuum surveys: gravitational lensing

- Probes total mass distribution and spacetime metric
Continuum surveys : gravitational lensing

- Detection of cosmic shear in FIRST survey

Chang et al. (2004)
Continuum surveys: gravitational lensing

- What is the potential radio advantage?

Probing to high redshifts

PSF calibration a challenge in optical

Shape estimates with uncorrelated systematics between radio/optical

Estimates of intrinsic shape using polarization and/or velocity maps

Morales (2006)

Brown & Battye (2010)
Continuum surveys: gravitational lensing

• What are the challenges?

Credit: http://radiogreat.jb.man.ac.uk
Continuum surveys: non-Gaussianity

- Largest-scale structure contains primordial imprint

Figure 1.

- **Right:** Ferramacho et al. (2014)
- **Left:** Seljak (2009)

Largest-scale structure contains primordial imprint

- The CMB exhibits unexpected features at the largest angular scales, among them a lack of thermal anisotropy and a strong dipole towards the galactic north, which is aligned with the cosmic microwave background. These features are believed to be imprints of the cosmic inflationary phase of the early universe.

Seljak (2009)

- The cosmic microwave background (CMB) is the oldest and most distant observable component of the universe, providing evidence for the initial conditions of the universe's expansion.

Ferramacho et al. (2014)

- The cosmic radio dipole direction, observed in the extragalactic sky, is a potential indicator of cosmological parameters. The precision of this measurement can be improved with future surveys.

Important Points

- The cosmic microwave background (CMB) is the oldest and most distant observable component of the universe, providing evidence for the initial conditions of the universe's expansion.

Key Equations

\[P(k) = \frac{\Omega_m^2}{k^3} \left(\frac{k}{k_{\text{edd}}(z)} \right)^{3} \left(\frac{1}{1 + \beta(k)} \right) \]

- Here, \(P(k) \) is the power spectrum, \(\Omega_m \) is the matter density parameter, \(k \) is the wave number, \(k_{\text{edd}}(z) \) is the effective sound horizon at redshift \(z \), and \(\beta(k) \) is the bias function.

Future Directions

- Continued research into the CMB and its anomalies, particularly the cosmic radio dipole, is essential for understanding the early universe and its evolution.

References

Figure Legends

- The figure illustrates the power spectrum \(P(k) \) of the cosmic microwave background for different values of the non-Gaussianity parameter \(f_{\text{NL}} \).

Discussion

- The non-Gaussianity of the cosmic microwave background is crucial for constraining the properties of the early universe and testing inflationary models.
Are CMB “anomalies” cosmologically interesting?

Test with radio galaxy dipole

Blake & Wall (2002)
Rubart & Schwarz (2013)
Cosmology with the SKA

- Use HI intensity mapping to measure large-scale structure across large volumes to high redshift
- Test cosmology with cross-correlations of the radio continuum survey with CMB and optical surveys
- Measure weak gravitational lensing in radio continuum observations using new techniques
- Constrain primordial non-Gaussianity using the largest-scale modes