PHY20004 Nuclear Physics Class 3: Radioactivity

In this class we will describe the basic types of nuclear radioactive decay, that produce α , β and γ particles

Introducing radioactivity

- Radioactivity is the spontaneous transformation of an unstable nucleus, involving the emission of radiation
- Radioactive decay can occur if the nucleons are arrange-able in a **lower energy state** than their current configuration

We will discuss the three common types of nuclear radioactive decay, which are labelled α , β , γ decays

α decays

- α-decay occurs when a nucleus is too large to be stable, and disintegrates to a lower-energy state by ejecting a helium nucleus, which is also known as an α-particle
- α -decay requires the parent to have **mass number** $A \gtrsim 150$ in order that the decay is spontaneous (i.e. energy Q > 0)

α decays

- Although other types of fission are possible, α-decay is dominant because ⁴₂He is **very tightly bound** (doubly magic!)
- Consider the energy released from the following decays of ^{232}U : the only spontaneous decay (with Q > 0) is ^{4}He

	п	р	^{2}H	³ H	³ He	⁴ He	⁵ He	⁶ Li	⁷ Li
Q /MeV	-7.26	-6.12	-10.70	-10.24	-9.92	+5.41	-2.59	-3.79	-1.94

α decays

• The escape of an *α*-particle from the nucleus is an example of **quantum tunneling**

- Tunneling is a quantum phenomenon which allows the α-particle to violate energy conservation for a brief period of time, owing to the quantum uncertainty principle
- Having tunneled out of the nucleus, the αparticle is ejected by Coulomb repulsion

Credit: https://www.nuclear-power.net/

 The mean lifetime of the unstable nucleus is highly sensitive to the height of the potential barrier and can vary between 10⁻⁷ s and 10⁺¹⁰ yr! (see: the Geiger-Nuttall law)

Calculating the energy released

- As the nucleus disintegrates to a lower energy configuration, α-decay releases energy Q which takes the form of the kinetic energy of the decay products
- *Q* can be calculated as the **difference in the binding energy** *B* between the decay products and the initial nucleus

β decays

 β-decay is the transformation of a neutron-rich (or protonrich) nucleus by the direct conversion of a neutron into a proton (or vice versa)

Credit: https://education.jlab.org

β decays

- β -decay transforms the number of protons Z and neutrons N in a nucleus closer to the **line of stability** $Z \sim N$
- There are 3 forms of β -decay:
 - β^- decay: *N* is too large for stability, and a neutron becomes a proton involving the emission of an electron and anti-neutrino $n \rightarrow p + e^- + \bar{\nu}_e$ $A_Z X \rightarrow A_{Z+1} Y^+ + A_{-1} e^- + \bar{\nu}_e$
 - β^+ decay: Z is too large for stability, and a proton becomes a neutron involving the emission of a positron and a neutrino

 $p \to n + e^+ + \nu_e \qquad {}^{A}_{Z}X \to {}^{A}_{Z-1}Y^- + {}^{0}_{+1}e^+ + \nu_e$

 Electron capture: Z is too large for stability, and an atomic electron strays too close to the nucleus and reacts with a proton, producing a neutron (within the nucleus) and a neutrino

 $p + e^- \rightarrow n + \nu_e$ $^A_Z X + ^0_{-1} e^- \rightarrow ^A_{Z-1} Y^- + \nu_e$

Neutrinos

- The production of new particles called **neutrinos** is an interesting feature of β-decay
- Neutrinos are weaklyinteracting, electrically-neutral particles with near-zero mass
- Their existence is required to ensure energy and momentum conservation during β-decay
- We'll hear much more about neutrinos later in the course!

The Super-Kamiokande detector in Japan, an underground neutrino detector

Note: a proton cannot decay in free space (since it's the lightest baryon), but inside a nucleus it can decay by borrowing some energy from the binding energy

γ decays

• γ -decay occurs when a nucleus is in an excited state – often following α - or β -decay – and reverts to the ground state, **emitting a photon** (also known as a γ -ray)

• γ -decay is similar to atomic de-excitation, but occurs at much higher energy (~ MeV vs. ~ eV)

Radioactive decay chains

- The products of radioactive decay may themselves be unstable to decay – creating a decay chain
- Here's the decay chain for Uranium 235 – notice the very different half-lives of different steps!
- We'll discuss this in more detail in the next class

Credit: http://hyperphysics.phy-astr.gsu.edu/

Key take-aways

- Radioactive decay is a spontaneous process which occurs when nucleons re-arrange themselves into a lower-energy configuration
- We can distinguish three main cases:
- α -decay: transformation of a large nucleus ($A \gtrsim 150$) by the emission of a ${}_{2}^{4}He$ particle, via quantum tunneling
- β-decay: transformation of a neutron into a proton (or vice versa), emitting an electron (or positron) and neutrino
- γ-decay: de-excitation of a nucleus, involving the emission of a photon