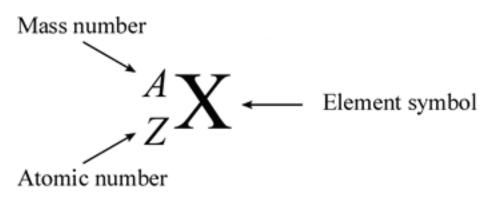
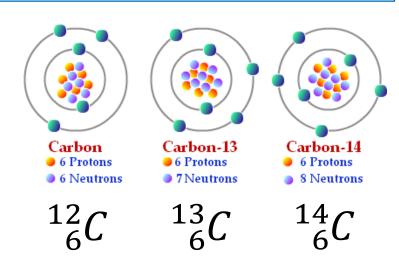

PHY20004 Nuclear Physics Class 1: Introducing the Nucleus

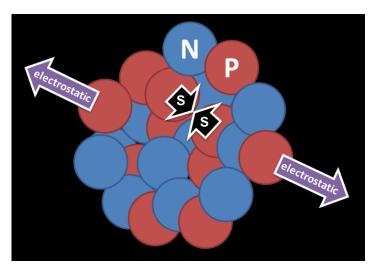

In this class we will summarize the basic properties of the nucleus: composition, size, nuclear forces and binding energy

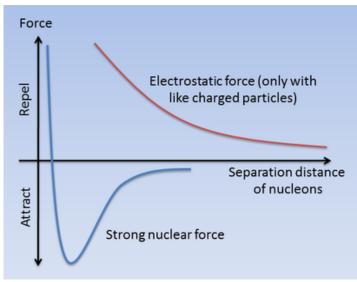


Describing the nucleus

- The nucleus is a bound assembly of neutrons and protons at the centre of an atom
- Atomic number Z = number of protons \rightarrow nuclear charge = +Ze
- Neutron number N = number of neutrons
- Mass number A = Z + N = total number of nucleons

This information is written as:

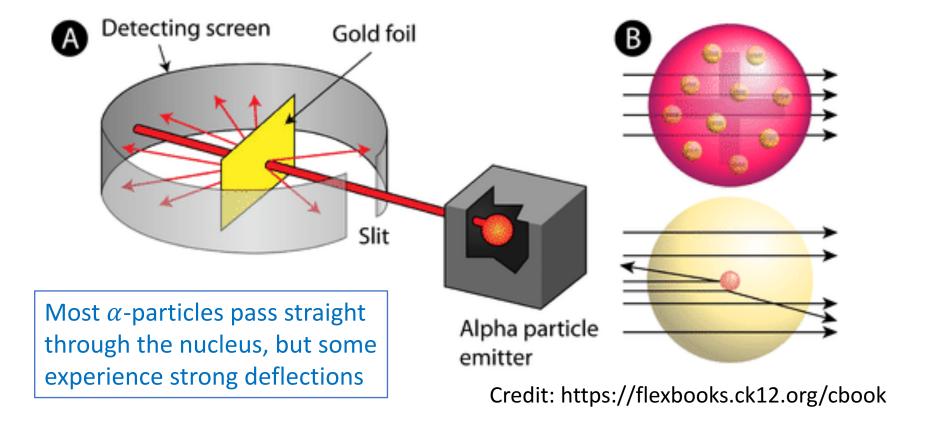




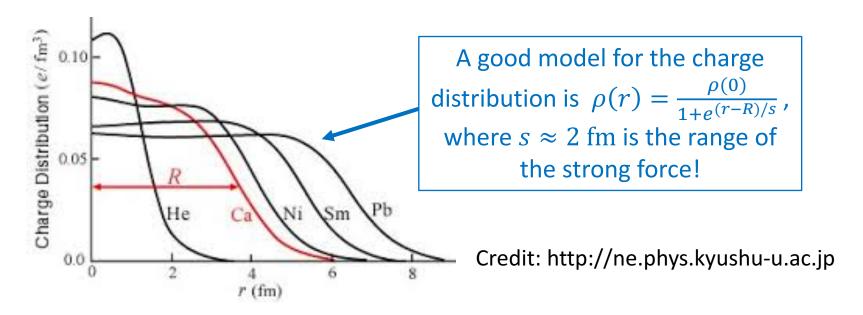
• This can also be written as ${}^{A}X$, since Z can be deduced from X!

Nuclear forces

- The existence of the nucleus is interesting, because protons should repel each other by Coulomb's Law!
- The electrostatic force is overcome by the strong nuclear force, which binds nucleons together
- The strong nuclear force is a short-range force which falls to zero after a few femtometres $(1 \text{ fm} = 10^{-15} \text{ m})$

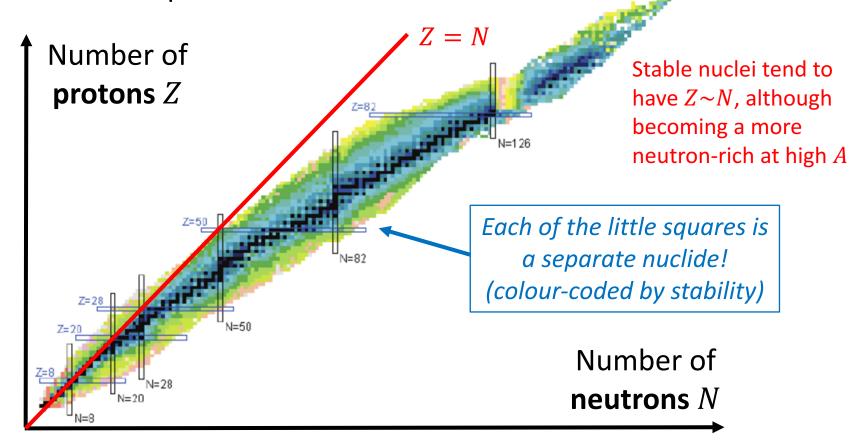


Credit:http://www.physbot.co.uk/particle-physics.html


How big is the nucleus?

• Rutherford's famous "gold foil" scattering experiments showed that the size of the nucleus ($\sim 10^{-15}$ m) is much smaller than the size of the atom ($\sim 10^{-10}$ m)

How big is the nucleus?

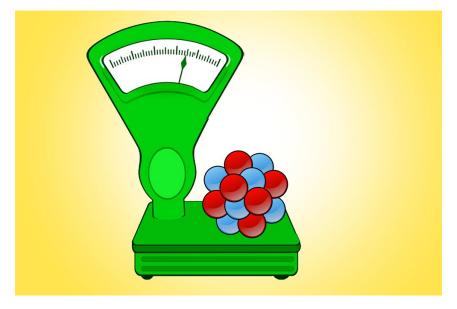

 The results of electron scattering experiments show nuclei have a fairly constant charge density out to the surface

• A constant charge density implies $\frac{A}{\frac{4}{3}\pi R^3} \approx \text{constant hence}$ radius $R \approx R_0 \, A^{1/3}$ where $R_0 \approx 1.2 \times 10^{-15} \, \text{m} = 1.2 \, \text{fm}$

All the nuclides!

 A nuclide is a distinct atom characterized by a specific number of protons and neutrons

See https://www.nndc.bnl.gov/nudat2/ for the full interactive chart


All the nuclides!

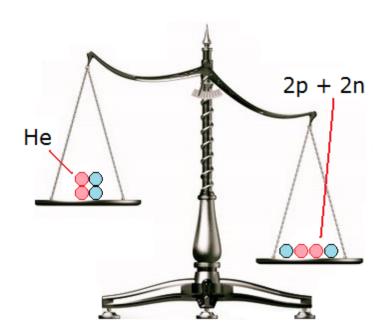
- A nuclide is a distinct atom characterized by a specific number of protons and neutrons
- Some nuclide terminology:
- **Isotopes** are nuclides with the same atomic number Z, but different numbers of neutrons (different N, A)
- **Isobars** are nuclides with the same mass number A, but different atomic numbers (different Z, N)
- **Isotones** are nuclides with the same neutron number N, but different atomic numbers (different Z, A)

Atomic mass units

• It's awkward to use the kg mass unit for atoms, so masses are typically expressed in **atomic mass units** (u)

• 1 u =
$$\frac{1}{12}$$
th the mass of one ${}^{12}_{6}$ C atom = $\frac{1}{12} \times \frac{12 \text{ g}}{6.023 \times 10^{23}}$ = 1.66054×10⁻²⁷ kg = 931.5 MeV/ c^2 Avogadro's number

Credit: http://www.scienceabc.com


$1u \approx$ the mass per nucleon inside the nucleus

Object	Mass [u]
Proton	1.00728
Neutron	1.00866
Electron	0.00055
Hydrogen atom	1.00783

The mass defect

• The key fact of nuclear physics is the total mass of a nucleus is less than the sum of the mass of its constituents – this is known as the mass defect ΔM

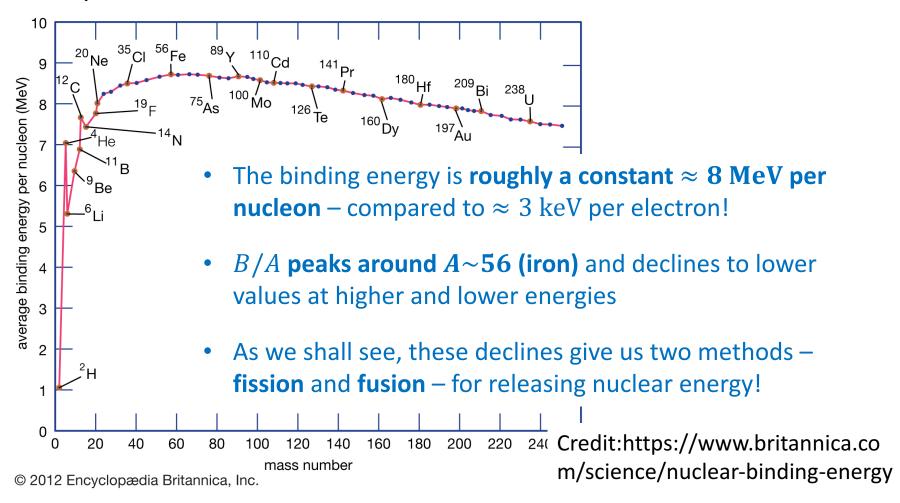
$$M_{nucleus} = Zm_P + Nm_N - \Delta M$$

Credit: https://chemistryonline.guru

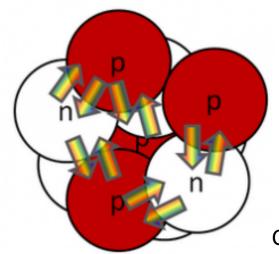
- This mass defect is equivalent to the **binding energy** of the nucleus, $B = \Delta M c^2$
- This is the energy needed to break the nucleus apart
- Binding energy can also be released by nuclear reactions

The mass defect

• The key fact of nuclear physics is the total mass of a nucleus is less than the sum of the mass of its constituents – this is known as the mass defect ΔM


$$M_{nucleus} = Zm_P + Nm_N - \Delta M$$

- Usually atomic masses of nuclides are given which include both the nucleus and the electrons
- Therefore, it is useful to write the above formula in terms of atomic masses and m_H , the mass of the hydrogen atom including the electron:


$$M_{atom} = Zm_H + Nm_N - \Delta M$$

Nuclear binding energy

• Let's consider the average binding energy per nucleon, B/A, for all the nuclides:

Nuclear binding energy

Credit: https://www.proprofs.com

- The fact that B/A is approximately constant implies that the **nuclear force is short range**: nucleons only interact with their neighbours, *not* with all other nucleons
- If nucleons interacted with all other nucleons, we would expect the binding energy to grow as $B \propto A(A-1) \sim A^2$, hence B/A would be approximately proportional to A

Key take-aways

- Nuclides are represented by the symbol ${}_Z^A X$
- Nuclei are bound together by the strong nuclear force
- Nuclei have radii $R \approx R_0 A^{1/3}$ with $R_0 = 1.2$ fm
- Nuclei have a binding energy $B = \Delta m \ c^2$ which is released when they break apart, given in terms of the mass defect $\Delta m = Zm_H + Nm_N m_{atom}$
- The binding energy per nucleon B/A is approximately constant, although decreases at low and high A
- Atomic and nuclear masses are expressed in terms of atomic mass units $u = 1.66054 \times 10^{-27} \text{ kg}$