
HONOURS:	GENERAL	RELATIVITY	WORKBOOK	
	

Relativistic	Physics	
	

Class	1:	Special	Relativity	
	

A)	LORENTZ	TRANSFORMATIONS	
	
Einstein	postulated	that	the	speed	of	light	is	the	same	in	all	inertial	reference	frames,	
regardless	of	the	motion	of	the	source.	
	
Consider	two	inertial	reference	frames	𝑆,	recording	events	with	space-time	coordinates	
(𝑐𝑡, 𝑥, 𝑦, 𝑧),	and	𝑆′,	with	co-ordinates	(𝑐𝑡′, 𝑥′, 𝑦′, 𝑧′).		Let’s	send	a	light	signal	out	from	the	
origin,	when	𝑆	and	𝑆′	coincide.		According	to	Einstein’s	postulate,	events	along	the	light	
signal	must	be	related	in	𝑆	and	𝑆′	by:	
	

𝑥+ + 𝑦+ + 𝑧+ = 𝑐𝑡 +	
	

𝑥′+ + 𝑦′+ + 𝑧′+ = 𝑐𝑡′ +	
	

Show	that	this	requirement	is	satisfied	in	both	frames	if	events	transform	from	𝑆	to	𝑆′	
according	to	the	Lorentz	transformations:	
	

𝑐𝑡. = 𝛾(𝑐𝑡 − 1
2
	𝑥)	

	

𝑥. = 𝛾(𝑥 − 1
2
	𝑐𝑡)	

	

𝑦. = 𝑦	
	

𝑧. = 𝑧	
	

where	𝛾 = 1/ 1 − 𝑣+/𝑐+.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



B)	SPACE-TIME	DIAGRAMS	
	
Let’s	draw	some	space-time	diagrams	in	frame	𝑆	for	events	with	space	coordinate	𝑥	and	
time	coordinate	𝑡.		On	a	graph	of	𝑐𝑡	against	𝑥:	
	
a)	Draw	the	path	of	a	light	ray,	and	the	path	a	particle	travelling	with	speed	𝑣 < 𝑐.		
	
	
	
	
	
	
	
	
	
b)	An	event	𝐸	occurs	at	𝑥 = 0,	𝑡 = 0.		Draw	the	locus	of	events	in	𝑆	which	occur	(i)	1	second	
of	proper	time	after	𝐸,	(ii)	1	second	of	proper	time	before	𝐸,	(iii)	1	light-second	of	proper	
distance	away	from	𝐸.	
	
	
	
	
	
	
	
	
	
Which	of	these	events	can	be	caused	by	𝐸?	
	
c)	How	do	these	loci	of	events	look	in	the	space-time	diagram	of	𝑐𝑡′	against	𝑥′	in	frame	𝑆′?	
	
	
	
	
	
	
	
	
	
d)	In	the	space-time	diagram	for	frame	𝑆,	draw	the	loci	of	events	which	occur	at	constant	𝑥′,	
and	at	constant	𝑡′,	in	the	coordinate	system	of	𝑆′.	
	
	
	
	
	
	



C)	RELATIVISTIC	MECHANICS	
	
Conservation	of	Newtonian	momentum	𝑝 = 𝑚𝑣	is	inconsistent	with	special	relativity.		
Here’s	a	simple	example	to	show	why,	and	to	illustrate	the	fix.	
	
In	frame	𝑆,	consider	two	identical	particles,	𝐴	and	𝐵,	of	rest	mass	𝑚>	with	equal	and	
opposite	velocities	±𝑣,	colliding	and	sticking	together	to	form	a	particle	of	mass	2𝑚>.		Now	
consider	the	collision	as	viewed	from	frame	𝑆′,	travelling	with	particle	𝐵.	
	
a)	In	a	Galilean	transformation	of	velocities,	what	is	the	initial	velocity	of	particle	𝐴	in	𝑆′?		
Show	that	momentum	𝑝 = 𝑚>𝑣	is	conserved	in	frame	𝑆′.	
	
	
	
	
	
	
	
	
	
b)	In	a	Lorentz	transformation	of	velocities,	what	is	the	initial	velocity	of	particle	𝐴	in	𝑆′?		
[You	will	need	to	use	the	“addition	of	velocities”	formula:	𝑢. = (𝑢 + 𝑣)/(1 + B1

2C
)].		Show	

that	momentum	𝑝 = 𝑚>𝑣	is	not	conserved	in	𝑆′,	but	we	do	conserve	momentum	if	we	
modify	the	definition	of	mass	to	depend	on	velocity	such	that	
	

𝑚 𝑣 =
𝑚>

1 − 𝑣
+

𝑐+

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



D)	“PARADOX”	OF	SPECIAL	RELATIVITY	
	
Analysis	of	events	in	special	relativity	can	be	illustrated	by	certain	apparent	“paradoxes”.		A	
famous	example	is	the	“twin	paradox”,	in	this	activity	we	consider	another	example.	
	
A	barn	has	proper	length	𝐿.		A	pole,	also	of	proper	length	𝐿,	is	carried	towards	the	barn	by	a	
fast-moving	runner.		In	the	rest	frame	of	the	barn,	𝑆,	the	pole	is	observed	as	contracted	to	
length	𝐿/𝛾,	so	should	fit	inside	the	barn.		However,	in	the	runner’s	frame,	𝑆.,	the	barn	
appears	contracted	to	length	𝐿/𝛾,	so	the	pole	cannot	fit	inside.	
	
Explain	why	this	situation	is	not	a	paradox	by	drawing	space-time	diagrams	in	𝑆	and	𝑆′,	
marking	in	4	events:	
	

𝐸E:	the	front	end	of	the	pole	passes	the	front	door	of	the	barn	
𝐸+:	the	front	end	of	the	pole	passes	the	rear	door	of	the	barn	
𝐸F:	the	rear	end	of	the	pole	passes	the	front	door	of	the	barn	
𝐸G:	the	rear	end	of	the	pole	passes	the	rear	door	of	the	barn	

	
Using	your	space-time	diagrams,	in	what	order	do	these	events	occur	in	𝑆	and	𝑆′?	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Class	2:	Index	Notation	
	

A)	PRODUCING	4-VECTORS	
	
A	4-vector	is	a	group	of	four	physical	quantities	whose	values	in	different	inertial	frames	are	
related	by	the	Lorentz	transformations.		The	prototypical	4-vector	is	the	space-time	
coordinates	of	an	event	𝑥H = (𝑐𝑡, 𝑥, 𝑦, 𝑧).	
	
The	sum	or	difference	of	two	4-vectors	is	also	a	4-vector.		Hence,	taking	the	difference	
between	two	neighbouring	events,	we	find	the	4-vector	𝑑𝑥H = (𝑐𝑑𝑡, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧).		New	4-
vectors	may	also	be	produced	by	multiplying	or	dividing	by	an	invariant.	
	
a)	Divide	𝑑𝑥H	by	the	invariant	proper	time	interval	𝑑𝜏	to	obtain	the	components	of	the	4-
velocity	of	a	particle	𝑣H = 𝑑𝑥H/𝑑𝜏	in	terms	of	its	velocity	𝑣 = (𝑣K, 𝑣L, 𝑣M).	
	
	
	
	
	
	
b)	By	applying	the	Lorentz	transformations	to	the	4-velocity,	find	a	relation	between	the	𝑥-
components	of	velocity	of	a	particle	in	frames	𝑆	and	𝑆′.	
	
	
	
	
	
	
	
	
	
c)	Multiply	𝑣H	by	the	invariant	rest	mass	𝑚>	to	obtain	the	components	of	the	4-momentum	
of	a	particle	𝑝H = 𝑚>𝑣H	in	terms	of	its	energy	𝐸	and	momentum	𝑝 = (𝑝K, 𝑝L, 𝑝M).	
	
	
	
	
	
	
d)	Now	consider	applying	the	results	of	parts	b)	and	c)	to	a	photon,	which	has	zero	rest	
mass.		If	𝑣K = 𝑐,	what	is	𝑣K.?		What	is	𝑝H	for	a	photon?	
	
	
	
	
	



B)	INDEX	NOTATION	PRACTICE	
	
We	introduce	the	“down	4-vector”	with	lowered	index,	where	we	change	the	sign	of	the	
first	component,	such	that	𝑥H = (−𝑐𝑡, 𝑥, 𝑦, 𝑧).		We	can	then	write	the	space-time	interval	as	
	

𝑑𝑠+ = 𝑑𝑥H𝑑𝑥H
F

HO>

	

	

In	index	notation	we	don’t	write	the	summation,	so	this	equation	reads	𝑑𝑠+ = 𝑑𝑥H𝑑𝑥H.		
Whenever	we	have	a	pair	of	raised/lowered	indices,	a	sum	over	that	index	is	implied.	
	
The	process	of	converting	from	an	“up”	to	a	“down”	4-vector	can	be	written	as	𝑥H = 𝜂HQ𝑥Q,	

where	𝜂HQ =
−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

.		Likewise,	𝑥H = 𝜂HQ𝑥Q,	where	𝜂HQ =
−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

.	

	
a)	The	Lorentz	transformations	may	be	written	𝑥′H = 𝐿HQ𝑥Q.		What	is	the	matrix	𝐿HQ?	
	
	
	
	
	
b)	Write	an	expression	in	index	notation	for	the	inverse	Lorentz	transformations	of	an	up	4-
vector.		What	matrix	carries	out	the	transformation?		
	
	
	
	
	
c)	What	is	the	matrix	𝐿HR = 𝜂RQ𝐿HQ?	
	
	
	
	
	
	
	
d)	We	have	seen	that	𝑑𝑥H𝑑𝑥H	is	an	invariant.		What	are	the	values	of	the	invariant	
quantities	𝑣H𝑣H,	𝑝Q𝑝Q,	𝑣S𝑝S,	𝜂TR𝜂TR	and	𝐿SU𝐿SU?	
	
	
	
	
	
	
	



C)	4-CURRENT	AND	CONSERVATION	LAWS	
	
The	space-time	volume	element	𝑑𝑉	𝑑𝑡	is	a	Lorentz	invariant	(since	𝑑𝑥. = 𝛾	𝑑𝑥	and	𝑑𝑡. =
𝑑𝑡/𝛾,	then	𝑑𝑥.	𝑑𝑡. = 𝑑𝑥	𝑑𝑡).		If	a	small	region	of	space-time	contains	electric	charge	𝑑𝑄,	
we	may	hence	construct	a	4-vector,	
	

𝐽H =
𝑑𝑄	𝑑𝑥H

𝑑𝑉	𝑑𝑡 	

	
a)	Let	𝑑𝑥H	represent	the	space-time	displacement	of	all	the	charges	in	the	region,	in	some	
small	interval.		Use	the	components	of	𝑥H,	and	the	definition	of	current,	to	show	that	the	
components	of	this	4-vector	are	𝐽H = (𝜌𝑐, 𝐽K, 𝐽L, 𝐽M)	in	terms	of	charge	density	𝜌	and	spatial	
current	density	𝐽 = (𝐽K, 𝐽L, 𝐽M).	
	
	
	
	
	
	
	
	
	
	
	
	
b)	Charge	conservation	in	electromagnetism	is	expressed	by	∇. 𝐽 = −𝜕𝜌/𝜕𝑡.		Show	that	this	
relation	may	be	written	in	index	notation	as	𝜕H𝐽H = 0.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



D)	ENERGY-MOMENTUM	TENSOR	
	
Now	suppose	a	small	region	of	space-time	contains	momentum	𝑑𝑝H.		We	define	the	
energy-momentum	tensor	as,	
	

𝑇HQ =
𝑑𝑝H	𝑑𝑥Q

𝑑𝑉	𝑑𝑡 	

	
As	in	Activity	C,	suppose	𝑑𝑥H	represents	the	space-time	displacement	of	all	the	matter-
energy	in	the	region,	in	some	small	interval.	
	
a)	Use	the	components	of	𝑝H	and	𝑥H	to	show	that	𝑇>>	represents	the	energy	density	in	this	
region.	
	
	
	
	
	
	
	
	
	
	
	
b)	Show	that	𝑇>^ 	is	the	flux	of	energy	in	the	𝑥^-direction	(𝑖 > 0).	
	
	
	
	
	
	
	
	
	
	
	
c)	Show	that	𝑇^a 	is	the	flux	of	𝑖-momentum	in	the	𝑥a-direction	(𝑖, 𝑗 > 0).	
	
	
	
	
	
	
	
	
	
	



Class	3:	Electromagnetism	
	

A)	MAXWELL’S	EQUATIONS	RE-VISITED	
	
Electromagnetism	may	be	described	in	terms	of	the	Maxwell	field	tensor	
	

𝐹HQ = 𝜕H𝐴Q − 𝜕Q𝐴H	
	

In	this	equation,	𝜕H =
E
2
d
de
, d
dK
, d
dL
, d
dM

	–	to	obtain	𝜕H	you	would	raise	the	index	–	and	𝐴H =
𝑉/𝑐, 𝐴K, 𝐴L, 𝐴M 	is	the	electromagnetic	potential	4-vector,	where	𝑉	is	the	electrostatic	
potential	and	𝐴	is	the	magnetic	vector	potential.		Substituting	in	the	relations	for	the	

electric	field	𝐸 = −∇𝑉 − df
de
	and	magnetic	field	𝐵 = ∇×𝐴,	we	find:	

	

𝐹HQ =

0 𝐸K/𝑐
−𝐸K/𝑐 0

𝐸L/𝑐 𝐸M/𝑐
𝐵M −𝐵L

−𝐸L/𝑐 −𝐵M
−𝐸M/𝑐 𝐵L

0 𝐵K
−𝐵K 0

	

	
a)	In	tensor	notation,	two	of	Maxwell’s	Equations	can	be	written	compactly	as	
	

𝜕H𝐹HQ = −𝜇>	𝐽Q	
	

where	𝜇>	is	the	permeability	of	free	space,	and	𝐽H = (𝜌𝑐, 𝐽K, 𝐽L, 𝐽M)	is	the	current	4-vector.		
By	considering	cases	𝜈 = 0	and	𝜈 = 1,	show	that	you	recover	two	of	Maxwell’s	equations.	
	
	
	
	
	
	
	
	
b)	Show	that	𝜕R𝐹HQ + 𝜕H𝐹QR + 𝜕Q𝐹RH = 0.	
	
	
	
	
	
	
c)	By	considering	cases	 𝜆, 𝜇, 𝜈 = (0,1,2)	and	(1,2,3)	in	the	relation	in	part	b),	show	that	
you	recover	the	other	two	of	Maxwell’s	Equations.		
	
	
	
	
	



B)	MAGNETIC	FIELD	OF	A	CURRENT	
	
By	applying	the	Lorentz	transformation	to	the	Maxwell	field	tensor,	we	can	deduce	how	
electromagnetic	fields	transform	between	two	frames	𝑆	and	𝑆′:	
	

𝐹′HQ = 𝐿HT𝐿QR𝐹TR	
	

where	𝐿HT =

𝛾 − 1
2
𝛾

− 1
2
𝛾 𝛾

0 0
0 0

0 0
0 0

1 0
0 1

.	

	
a)	Use	the	Lorentz	transformation	to	show	that:	
	

𝐵K. = 𝐵K
𝐵L. = 𝛾 𝐵L + 𝑣𝐸M/𝑐+

𝐵M. = 𝛾 𝐵M − 𝑣𝐸L/𝑐+
	

	
	
	
	
	
	
	
	
	
	
	
b)	Consider	a	static	line	of	charge	in	frame	𝑆,	such	that	𝐵 = 0.		Gauss’s	Law	shows	that	𝐸L =
𝜆/2𝜋𝜀>𝑦	(at	𝑧 = 0)	in	𝑆,	where	𝜆	is	the	charge	per	unit	length.	
	
In	frame	𝑆′,	the	line	of	charge	becomes	a	current.		Use	the	Lorentz	transformation	to	
recover	the	expected	magnetic	field	strength	at	distance	𝑑	from	a	current	𝐼,	which	at	𝑧 = 0	
is	𝐵M′ = 𝜇>𝐼/2𝜋𝑦.	
	
	
	
	
	
	
	
	
	
	
	
	
	



C)	ELECTROMAGNETIC	ENERGY	DENSITY	AND	FLOW	
	
The	energy-momentum	tensor	𝑇HQ	for	electromagnetism	is:	
	

𝑇HQ =
1
𝜇>

𝐹HR𝐹QR −
1
4 𝜂

HQ𝐹TR𝐹TR 	

Recall	that	𝐹HR = 𝜂RQ𝐹HQ	and	𝐹TR = 𝜂TH𝜂RQ𝐹HQ,	where	𝜂HQ =
−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

.	

	
Let’s	first	consider	the	energy	density	component,	𝑇>>.	
	
a)	Show	that	𝐹TR𝐹TR = 2 𝐵+ − 𝐸+/𝑐+ 	and	𝐹>R𝐹>R = 𝐸+/𝑐+.	
	
	
	
	
	
	
	
	
	
	
b)	Hence	show	that	the	energy	density	in	electromagnetic	fields	is	𝑇>> = E

+
𝜀>𝐸+ + 𝐵+/2𝜇>.	

	
	
	
	
	
	
	
	
	
Now	consider	the	flow	of	energy	in	each	direction,	𝑇>^.	
	
c)	Show	that	𝑇>K = (𝐸L𝐵M − 𝐸M𝐵L)/𝜇>𝑐.	
	
	
	
	
	
	
	
	
	

This	is	the	𝑥-component	of	the	Poynting	vector	 E
Hp

q×r
2
.	



Class	4:	Accelerated	Motion	
	

A)	WORLD-LINE	OF	ACCELERATING	OBJECT	
	
Consider	an	object	moving	with	constant	proper	acceleration	𝛼.		This	means	that	
	

𝛼 = t1.
tu
=	constant	

	

where	𝑑𝜏	is	the	proper	time	elapsed	in	a	small	interval,	and	𝑑𝑣′	is	the	momentary	increase	
in	speed	from	rest	in	𝑆′.		Assume	the	object	is	at	rest	in	𝑆	at	𝜏 = 0.	
	
a)	Use	the	relativistic	addition	of	velocities	formula	to	show	that	the	increase	in	velocity	in	𝑆	
is	𝑑𝑣 ≈ 𝑑𝑣′ 1 − 1C

2C
.	

	
	
	
	
	
b)	Hence	by	substituting	in	𝑑𝑣. = 𝛼	𝑑𝜏,	show	that	𝑣 = 𝑐 tanh Su

2
	at	proper	time	𝜏.	

	
	
	
	
	
c)	Use	𝛾 = 1/ 1 − 𝑣+/𝑐+ = cosh Su

2
,	and	the	time	interval	in	𝑆,	𝑑𝑡 = 𝛾	𝑑𝜏,	to	show	that	

the	time	coordinate	𝑡	in	𝑆	is	related	to	the	proper	time	𝜏	by	𝑡 = 2
S
sinh Su

2
.	

	
	
	
	
	
d)	Starting	from	the	relation	for	the	space-time	interval,	for	𝑑𝜏	in	terms	of	𝑑𝑡	and	𝑑𝑥,	show	
that	the	𝑥-coordinate	of	the	object	in	𝑆	is	given	by	𝑥 = 2C

S
cosh Su

2
.	

	
	
	
	
	
e)	Draw	the	world	line	of	the	object	in	𝑆	on	a	space-time	diagram	of	𝑐𝑡	against	𝑥.	
	
	
	
	
	



Gravity	and	Curvature	
	

Class	5:	Equivalence	Principle	
	

A) GRAVITATIONAL	BENDING	OF	LIGHT	
	
A	consequence	of	the	Equivalence	Principle	is	that	light	will	be	bent	in	a	gravitational	field.		
How	much	bending	should	we	see	in	a	laboratory	at	rest	on	the	Earth’s	surface?		According	
to	the	Equivalence	Principle,	in	such	a	laboratory	one	would	observe	the	same	effects	as	in	a	
laboratory	accelerating	in	deep	space	with	a	uniform	acceleration	of	𝑔 = 9.8	𝑚	𝑠�+.	
	
Imagine	that	a	laser	at	one	end	of	the	laboratory	emits	a	beam	of	light	that	originally	travels	
parallel	to	the	laboratory	floor.		The	light	shines	on	the	opposite	wall	of	the	laboratory,	at	a	
horizontal	distance	of	𝑑 = 3.0	𝑚.	
	
a)	What	is	the	magnitude	of	the	vertical	deflection	of	the	light	beam?	
	
	
	
	
	
	
	
	
	
	
b)	What	is	the	magnitude	of	this	deflection	if	the	laboratory	sits	on	the	surface	of	a	neutron	
star,	which	has	a	mass	𝑀 = 3.0×10F>	𝑘𝑔	and	radius	𝑅 = 12	𝑘𝑚?		(For	the	purposes	of	this	
question,	neglect	strong-field	effects	and	calculate	𝑔	using	Newtonian	methods!)		
	
	
	
	
	
	
	
	
	
	
	
	
	
	



B) THE	GLOBAL	POSITIONING	SYSTEM	
	
The	Global	Positioning	System	(GPS)	is	a	network	of	satellites	that	allows	anyone,	with	the	
aid	of	a	small	device	(receiver),	to	determine	exactly	where	they	are	on	the	Earth’s	surface.		
Each	satellite	contains	a	very	precise	clock	and	microwave	transmitter.	
	
a)	Suppose	the	clocks	on	the	GPS	satellites	contain	a	very	small	error,	such	that	they	drift	by	
“only”	1	part	in	10	billion.		What	distance	error	would	accumulate	every	day?	
	
	
	
	
	
	
The	proper	time	interval	𝑑𝜏	between	2	events,	in	terms	of	the	co-ordinate	time	interval	𝑑𝑡,	
is	𝑑𝜏 = 𝑑𝑡 1 + 2𝜙/𝑐+,	where	𝜙	is	the	gravitational	potential.	
	
b)	Assuming	the	weak	field	expression	for	the	gravitational	potential	near	the	Earth,	𝜙 =
−𝐺𝑀/𝑟,	and	considering	for	the	moment	that	the	clocks	are	at	rest	in	the	gravitational	
field,	what	fractional	timing	error	is	caused	by	the	difference	in	𝜙	between	the	Earth’s	
surface	and	the	satellites?		(Estimate	or	look	up	the	data	you	need).		Do	the	satellite	clocks	
run	fast	or	slow	compared	to	Earth	clocks?	
	
	
	
	
	
	
	
	
	
	
c)	The	GPS	satellites	are	in	motion,	orbiting	the	Earth.		For	the	purposes	of	this	part	of	the	
question	we	will	assume	that	the	satellites	and	Earth	observers	are	in	the	same	inertial	
reference	frame.		Estimate	the	velocity	of	the	satellites	in	their	orbit,	and	hence	use	time	
dilation	in	Special	Relativity	to	determine	the	fractional	timing	error	caused	by	the	motion	
of	the	satellites	in	orbit.		Do	the	satellite	clocks	run	fast	or	slow	compared	to	Earth	clocks?	
	
	
	
	
	
	
	
	
	
	



Class	6:	Curved	Space	and	Metrics	
	

A)	GEOMETRY	ON	A	CURVED	SURFACE	
	
The	normal	geometric	relations	in	flat	space	do	not	apply	in	a	curved	space.		Consider	a	2D	
spherical	surface	with	co-ordinates	(𝜃, 𝜙).		To	make	it	easy	to	visualize,	we’ll	consider	the	
surface	of	a	3D	sphere	of	radius	𝑅.	
	
a)	Show	that	the	distance	metric	on	the	surface	of	the	sphere	is	
	

𝑑𝑠+ = 𝑅+	𝑑𝜃+ + 𝑅 sin 𝜃 +	𝑑𝜙+	
	
	
	
	
	
	
b)	Starting	from	the	North	Pole,	move	a	small	constant	distance	𝜀	in	all	directions,	forming	a	
“circle”	in	the	curved	space.		Show	that	the	circumference	of	this	circle	is	not	the	flat-space	
relation	2𝜋𝜀,	but	rather,	
	

𝐶 ≈ 2𝜋𝜀 1 −
𝜀+

6𝑅+ 	

	
	
	
	
	
	
c)	The	area	element	of	a	2D	co-ordinate	space	with	metric	𝑑𝑠+ = 𝑔HQ𝑑𝑥H𝑑𝑥Q	is	𝑑𝐴 =
|𝑔|	𝑑𝑥>𝑑𝑥E.		Using	the	metric	of	part	a),	show	that	the	area	element	of	a	spherical	surface	

is	𝑑𝐴 = 𝑅+ sin 𝜃 𝑑𝜃𝑑𝜙.	
	
	
	
	
	
	
d)	Show	that	the	area	of	the	circle	in	part	b)	is	not	the	flat-space	relation	𝜋𝜀+,	but	rather,	
	

𝐴 ≈ 𝜋𝜀+ 1 −
𝜀+

12𝑅+ 	

	
	
	
	
	



B)	METRICS	IN	2D	
	
The	metric	determines	the	geometry	of	space.		But	the	geometry	does	not	uniquely	
determine	the	metric,	because	we	may	always	transform	co-ordinates.	
	
a)	What	are	some	geometrical	methods	we	could	use	to	determine	whether	a	given	co-
ordinate	space	is	flat	or	curved?	
	
	
	
	
	
	
	
	
b)	Motivated	by	the	result	of	Activity	A,	part	d),	we	can	define	the	curvature	of	a	2D	surface	
at	a	point	by	the	relation	
	

𝑘 = 	 lim
�→>

12
𝜀+ 1 −

𝐴
𝜋𝜀+ 	

	

where	𝐴	is	the	area	enclosed	by	moving	a	small	constant	distance	𝜀.		What	is	the	curvature	
of	the	2D	spherical	surface	from	Activity	A?	
	
	
	
	
	
c)	Consider	two	distance	metrics	for	co-ordinates	(𝑟, 𝜃).		The	first	is	a	polar	co-ordinate	
system,	with	𝑑𝑠+ = 𝑑𝑟+ + 𝑟+𝑑𝜃+.		The	second	is	a	modified	co-ordinate	system	with	metric	
	

𝑑𝑠+ =
𝑑𝑟+ + 𝑟+𝑑𝜃+

1 + 𝑟+ 	
	

Use	the	formula	in	part	b)	to	find	the	curvature	at	𝑟 = 0	of	these	two	spaces.		Do	they	
represent	flat	or	curved	space?	
	
	
	
	
	
	
	
	
	
	
	
	



Class	7:	Geodesics	
	

A)	GEODESICS	ON	A	SPHERE	
	
As	in	Class	6,	we’ll	consider	a	2D	spherical	surface	with	co-ordinates	(𝜃, 𝜙),	by	embedding	a	
sphere	of	radius	𝑅	in	a	3D	space.	
	
a)	Write	down	the	metric	elements	𝑔��,	𝑔��,	𝑔��	and	𝑔��	on	the	surface	of	the	sphere.	
	
	
	
	
b)	What	are	the	values	of	𝑔��	and	𝑔��?	
	
	
	
	
c)	Use	the	relation	for	the	Christoffel	symbols,	ΓTR

H = E
+
𝑔HQ 𝜕R𝑔QT + 𝜕T𝑔RQ − 𝜕Q𝑔TR ,	to	

show	that	the	non-zero	symbols	are	Γ��� = −sin 𝜃 cos 𝜃	and	Γ��
� = Γ��

� = cot 𝜃.	
	
	
	
	
	
	
	
	
	

d)	Hence	show	that	the	geodesic	equations	t
CK�

tuC
+ ΓTR

H tK�

tu
tK�

tu
= 0	on	the	surface	are:	

	

𝑑+𝜃
𝑑𝜏+ − sin 𝜃 cos 𝜃

𝑑𝜙
𝑑𝜏

+

= 0																				
𝑑+𝜙
𝑑𝜏+ + 2 cot 𝜃

𝑑𝜃
𝑑𝜏

𝑑𝜙
𝑑𝜏 = 0	

	
	
	
	
	
	
e)	Consider	the	geodesic	between	two	points	A	and	B	on	the	sphere.		Without	loss	of	
generality,	we	can	rotate	the	coordinate	system	such	that	the	two	points	are	on	the	
equator,	𝜃 = 𝜋/2.		In	this	case,	find	the	geodesic	and	explain	why	it	is	a	“great	circle”.		
	
	
	
	



B) MOTION	IN	A	WEAK	FIELD	
	
The	space-time	metric	of	a	weak,	static	gravitational	field	is	
	

𝑔HQ 𝑥^ = 𝜂HQ + ℎHQ 𝑥^ 	
	

where	𝜂HQ =
−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

	is	the	metric	for	flat	space-time,	and	|ℎHQ| ≪ 1	is	a	small	

perturbation	which	depends	only	on	spatial	co-ordinates	𝑥^ = (𝑥, 𝑦, 𝑧),	not	time.	
	

a)	Particles	move	along	geodesics	which	satisfy	t
CK�

tuC
+ ΓTR

H tK�

tu
tK�

tu
= 0.		If	a	particle	is	slowly	

moving,	then	tK
�

tu
≪ tK�

tu
.		Explain	why	this	implies	that,	in	terms	of	co-ordinate	time	𝑡,	

	

𝑑+𝑥H

𝑑𝑡+ ≈ −𝑐+	Γee
H 	

	
	
	
	
b)	Use	the	relation	for	the	Christoffel	symbols,	ΓTR

H = E
+
𝑔HQ 𝜕R𝑔QT + 𝜕T𝑔RQ − 𝜕Q𝑔TR ,	to	

show	that,	for	𝑖 = (𝑥, 𝑦, 𝑧),	
	

Γee^ ≈ −
1
2
𝜕ℎee
𝜕𝑥^ 	

	
	
	
	
	
c)	Newton’s	Laws	relate	the	acceleration	of	a	particle	to	the	gravitational	potential	𝜙(𝑥)	via	
tCK
teC

= −∇𝜙.		Use	the	results	for	parts	a)	and	b)	to	demonstrate	that	the	weak-field	metric	is	
	

𝑔ee ≈ −1 −
2𝜙
𝑐+ 	

	
	
	
	
d)	Hence	for	a	clock	at	rest	in	a	weak	gravitational	field,	show	that	a	co-ordinate	time	
interval	𝑑𝑡	is	related	to	the	proper	time	interval	𝑑𝜏	by	
	

𝑑𝑡 =
𝑑𝜏

1 + 2𝜙/𝑐+
	

	



Class	8:	Space-time	Geometry	
	

A)	RIEMANN	TENSOR	ON	A	SPHERE	
	
In	this	Activity,	we	will	compute	as	an	example	the	Riemann	curvature	tensor	on	a	2D	
spherical	surface,	with	metric:	
	

𝑑𝑠+ = 𝑅+	𝑑𝜃+ + 𝑅 sin 𝜃 +	𝑑𝜙+	
	

The	Riemann	tensor	may	be	determined	from	the	Christoffel	symbols	using	the	relation,	
	

𝑅TRHQ = 𝜕HΓRQT − 𝜕QΓRHT + ΓHST ΓRQS − ΓQST ΓRHS 	
	

In	the	previous	class,	we	saw	that	the	only	non-zero	Christoffel	symbols	for	this	metric	are	
Γ��� = −sin 𝜃 cos 𝜃	and	Γ��

� = Γ��
� = cot 𝜃.	

	
a)	For	a	2D	space,	the	Riemann	tensor	has	only	1	independent	component.		Show	that	this	
component	may	be	written	
	

𝑅���� = sin 𝜃 +	
	
	
	
	
	
	
b)	Use	the	relation	for	the	Riemann	tensor	in	terms	of	the	Christoffel	symbols	to	show	that	
	

𝑅���� = 1	
	
	
	
	
	
	
c)	Since	there	is	only	1	independent	component,	we	must	be	able	to	deduce	𝑅����	from	
𝑅����!		We	can	show	from	the	definition	of	the	Riemann	tensor	that	two	symmetries	are:	
	

𝑅RTHQ = −𝑅TRHQ										𝑅HQTR = 𝑅TRHQ	
	

Use	these	symmetries	to	deduce	the	result	of	part	b)	from	part	a).	
	
	
	
	
	
	



Black	Holes	and	the	Universe	
	

Class	9:	Black	Holes	
	

A)	THE	SCHWARZSCHILD	RADIUS	
	
a)	The	Schwarzschild	radius	of	an	object	of	mass	𝑀	is	𝑅� = 2𝐺𝑀/𝑐+.		A	black	hole	is	an	
object	which	has	a	radius	𝑟 < 𝑅�.		Determine	the	minimum	density	of	an	object	which	
satisfies	this	requirement	if	(1)	𝑀 = 1	𝑀⨀,	(2)	𝑀 = 10E>	𝑀⨀.	
	
	
	
	
	
	
	
	
	
	
	
b)	In	Class	4	we	related	the	change	in	the	clock	rate	𝐶	with	proper	distance	𝐿	to	the	proper	
acceleration	𝛼,	which	is	equivalent	to	the	gravitational	field.	
	

𝑑𝐶
𝐶 =

𝛼	𝑑𝐿
𝑐+ 	

	

In	the	Schwarzschild	metric	the	clock	rate	𝐶 ∝ 1 − 𝑅�/𝑟,	and	proper	distance	interval	𝑑𝐿	
is	related	to	co-ordinate	distance	interval	𝑑𝑟	as	𝑑𝐿 = 𝑑𝑟/ 1 − 𝑅�/𝑟.		Show	that:	
	

𝛼 = −
𝐺𝑀

𝑟+ 1 − 𝑅�/𝑟
	

	

What	are	the	values	of	𝛼	at	𝑟 ≫ 𝑅�	and	𝑟 = 𝑅�?	
	
	
	
	
	
	
	
	
	
	
	
	
	



B)	RADIAL	PLUNGE	INTO	A	BLACK	HOLE	
	
The	Schwarzschild	space-time	metric	around	a	black	hole	is		
	

𝑑𝑠+ = − 1 −
𝑅�
𝑟 𝑐+𝑑𝑡+ +

𝑑𝑟+

1 − 𝑅�𝑟
+ 𝑟+ 𝑑𝜃+ + sin 𝜃 +𝑑𝜙+ 	

	

in	terms	of	the	Schwarzschild	radius	𝑅�.		Freely-falling	observers	have	world-lines	𝑥H(𝜏)	
following	geodesics	t

CK�

tuC
+ ΓTR

H tK�

tu
tK�

tu
= 0,	where	ΓTR

H = E
+
𝑔HQ 𝜕R𝑔QT + 𝜕T𝑔RQ − 𝜕Q𝑔TR .	

	
a)	Writing	𝐴 = 1 − 𝑅�/𝑟,	show	that	Γ�ee =

E
+f

tf
t�
.		Hence	demonstrate	that	the	𝜇 = 𝑡	

geodesic	equation	may	be	written	in	the	form	
	

𝑑
𝑑𝜏 𝐴

𝑑𝑡
𝑑𝜏 = 0	

	

and	hence	that	𝑑𝑡/𝑑𝜏 = 𝐾/𝐴,	where	𝐾	is	a	constant.	
	
	
	
	
	
b)	Writing	𝑑𝑠+ = −𝑐+𝑑𝜏+,	use	the	original	equation	for	the	metric	to	demonstrate	that,	for	
an	object	radially	plunging	into	a	black	hole	(such	that	𝑑𝜃 = 𝑑𝜙 = 0),	
	

−𝐴
𝑑𝑡
𝑑𝜏

+

+
1
𝐴𝑐+

𝑑𝑟
𝑑𝜏

+

+ 1 = 0	
	
	
	
	
	
c)	Consider	an	object	which	is	at	rest	(𝑑𝑟/𝑑𝜏 = 0)	at	𝑟 = ∞.		What	is	the	value	of	𝐾?		Show	
that	the	proper	time	required	to	travel	from	𝑟 = 𝑅>	to	𝑟 = 0	is	
	

∆𝜏 =
2𝑅>F/+

3𝑐𝑅£E/+
	

	
	
	
	
	
d)	What	is	the	co-ordinate	time	interval	∆𝑡	required	to	reach	𝑟 = 𝑅�?	
	
	
	
	



C)	ORBITS	AROUND	A	BLACK	HOLE	
	
a)	Light	rays	move	through	space-time	such	that	𝑑𝑠 = 0.		Use	the	Schwarzschild	metric	to	
show	that	for	a	radially-moving	light	ray	near	a	black	hole,		
	

1
𝑐
𝑑𝑟
𝑑𝑡 = 1 −

𝑅�
𝑟 	

	

Why	does	this	equation	imply	that	a	light	ray	emitted	from	𝑟 < 𝑅�	cannot	escape	the	black	
hole?		What	happens	to	a	light	ray	emitted	at	𝑟 = 𝑅�?	
	
	
	
	
Now	consider	a	light	ray	in	a	circular	orbit	around	a	black	hole,	such	that	𝑟 =	constant.		We	
can	choose	the	orbit	in	the	𝜙	direction,	such	that	𝜃 = 90°.	
	
b)	Use	the	condition	𝑑𝑠 = 0	for	this	orbit	to	show	that	the	angular	velocity	of	the	light	ray	is	
	

1
𝑐
𝑑𝜙
𝑑𝑡 =

1 − 𝑅�/𝑟
𝑟 	

	
	
	
	

c)	Use	the	𝜇 = 𝑟	component	of	the	geodesic	equation	t
CK�

t¥C
+ ΓTR

H tK�

t¥
tK�

t¥
= 0	to	show	that	

	

𝑐+	Γee�
𝑑𝑡
𝑑𝑝

+

+ 2𝑐	Γe��
𝑑𝑡
𝑑𝑝

𝑑𝜙
𝑑𝑝 + Γ���

𝑑𝜙
𝑑𝑝

+

= 0	

	
	
	
	
d)	Use	the	results	Γee� =

E
+
𝐴 tf
t�
,	Γe�� = 0	and	Γ��� = −𝐴𝑟 sin 𝜃 +,	in	terms	of	𝐴 = 1 − 𝑅£/𝑟,	

to	show	that	we	obtain	a	second	relation	for	the	angular	velocity,	
	

1
𝑐
𝑑𝜙
𝑑𝑡 =

𝑅�
2𝑟F	

	
	
	
	
e)	By	equating	the	results	of	parts	b)	and	d),	find	the	radius	of	orbit	of	light	rays	in	a	circular	
orbit	around	a	black	hole.	
	
	



Class	10:	Einstein	equation	
	

A)	THE	NEWTONIAN	LIMIT	
	
In	Class	7,	Activity	B,	we	showed	that	the	first	entry	of	the	space-time	metric	for	a	weak	
gravitational	field	was	𝑔ee ≈ −1 − 2𝜙/𝑐+,	in	terms	of	Newtonian	gravitational	potential	
𝜙(𝑥^).		We	also	calculated	the	Christoffel	symbol	Γee^ ≈

E
2C

d�
tK�

.	
	
The	Ricci	tensor	𝑅HQ	is	related	to	the	Christoffel	symbols	by	
	

𝑅HQ = 𝜕RΓHQR − 𝜕QΓHRR + ΓTRT ΓHQR − ΓQRT ΓHTR 	
	

a)	Show	that	𝑅ee ≈ ∇+𝜙/𝑐+.		(Hint:	since	this	is	a	weak	field,	we	can	neglect	the	last	2	terms	
because	they	are	products	of	small	quantities).	
	
	
	
	
	
b)	The	Einstein	equation	relates	space-time	curvature	to	matter-energy	by	𝑅HQ −

E
+
𝑅𝑔HQ =

¦§¨
2©
𝑇HQ,	where	the	Ricci	scalar	𝑅	may	be	calculated	as	𝑅 = 𝑔HQ𝑅HQ.		By	applying	𝑔HQ	to	both	

sides	of	the	equation,	show	that	the	Einstein	equation	may	be	re-written	in	the	form	
	

𝑅HQ =
8𝜋𝐺
𝑐G 𝑇HQ −

1
2𝑇𝑔HQ 	

	

where	𝑇 = 𝑔HQ𝑇HQ.	
	
	
	
	
	
	
c)	Explain	why	the	matter-energy	tensor	𝑇HQ	for	slowly-moving	matter	with	mass	density	𝜌	is	
𝑇ee ≈ 𝜌𝑐+,	𝑇�ª£e ≈ 0.		Hence	show	that,	for	a	weak	field,	𝑇 ≈ −𝜌𝑐+.	
	
	
	
	
	
d)	Use	the	above	results	to	demonstrate	that,	in	the	weak-field	limit,	the	Einstein	equation	
is	consistent	with	the	Newtonian	relation	for	the	gravitational	potential,	∇+𝜙 = 4𝜋𝐺𝜌.	
	
	
	
	



Class	11:	Cosmology	
	

A)	LIGHT	RAYS	IN	EXPANDING	SPACE	
	
The	metric	of	a	homogeneous	Universe	of	curvature	𝑘,	expanding	with	scale	factor	𝑎(𝑡),	in	
terms	of	space-time	co-ordinates	(𝑡, 𝑟, 𝜃, 𝜙)	is:	
	

𝑑𝑠+ = −𝑐+𝑑𝑡+ + 𝑎(𝑡)+
𝑑𝑟+

1 − 𝑘𝑟+ + 𝑟
+ 𝑑𝜃+ + sin 𝜃 +𝑑𝜙+ 	

	
a)	Use	the	relation	for	the	Christoffel	symbols	ΓTR

H = E
+
𝑔HQ 𝜕R𝑔QT + 𝜕T𝑔RQ − 𝜕Q𝑔TR 	to	show	

that	for	this	space-time	metric,	
	

Γ��e =
𝑎
𝑎	
𝑔��
𝑐 	

	

(the	other	symbols	Γ�ª£e = 0).	
	
	
	
	
	
	
	
	
b)	Light	rays	with	4-vector	𝑘H = 𝑑𝑥H/𝑑𝑝	satisfy	the	geodesic	equation	t¬

�

t¥
+ ΓTR

H 𝑘T𝑘R = 0	
and	the	relation	for	zero	space-time	interval,	𝑔HQ𝑘H𝑘Q = 0.		Use	these	relations	together	
with	the	result	from	part	a)	to	show	that,	for	a	radially	propagating	light	ray,	
	

𝑑𝑘e

𝑑𝑝 +
𝑎
𝑎 𝑘e + = 0	

	
	
	
	
	
	
	
	
c)	The	frequency	𝜔	of	the	light	ray	is	given	by	𝑘e = 𝜔/𝑐.		Show	that	the	result	of	part	b)	
implies	that	the	frequency	of	a	light	ray	in	an	expanding	Universe	changes	such	that	
	

𝜔 ∝
1
𝑎	

	
	
	



B)	THE	FRIEDMANN	EQUATION	
	
The	non-zero	elements	of	the	Ricci	tensor	𝑅HQ	of	the	space-time	metric	in	Activity	A	are:	
	

𝑅ee = −
3
𝑐+
𝑎
𝑎	

	

𝑅^^ =
𝑎
𝑎 + 2

𝑎
𝑎

+

+
2𝑘𝑐+

𝑎+
𝑔^^
𝑐+ 	

	
a)	Show	that	the	Ricci	scalar	𝑅 = 𝑔HQ𝑅HQ	is	
	

𝑅 =
6
𝑐+

𝑎
𝑎 +

𝑎
𝑎

+

+
𝑘𝑐+

𝑎+ 	

	
	
	
	
	
	
	
	
b)	Hence	show	that	the	first	component	of	the	Einstein	tensor	𝐺HQ = 𝑅HQ −

E
+
𝑅𝑔HQ	is,	

	

𝐺ee =
3
𝑐+

𝑎
𝑎

+

+
𝑘𝑐+

𝑎+ 	

	
	
	
	
	
	
	
	
c)	Use	the	𝜇 = 𝑡,	𝜈 = 𝑡	component	of	the	Einstein	equations,	𝐺HQ =

¦§¨
2©
𝑇HQ,	and	the	

energy-momentum	tensor	for	slowly-moving	matter,	𝑇ee = 𝜌(𝑡)𝑐+	and	𝑇�ª£e = 0,	to	show	
that	the	scale	factor	of	the	expanding	Universe	satisfies	the	Friedmann	equation	
	

𝑎
𝑎

+

=
8𝜋𝐺𝜌(𝑡)

3 −
𝑘𝑐+

𝑎+ 	
	
	
	
	
	
	



C)	LIGHT	TRAVEL	IN	AN	EXPANDING	UNIVERSE	
	
Let	us	combine	the	results	of	Activities	A	and	B	to	determine,	if	a	ray	of	light	reaches	our	
telescopes	with	redshift	𝑧,	how	long	has	it	been	travelling	through	the	expanding	Universe?	
	
We’ll	suppose	that	the	Universe	today	(𝑡 = 𝑡>)	has	zero	curvature	(𝑘 = 0)	and	a	special	
matter	density	called	the	critical	density,	
	

𝜌 𝑡> =
3𝐻>+

8𝜋𝐺 	
	

where	𝐻>	is	the	value	of	𝑎/𝑎	in	today’s	Universe,	known	as	the	Hubble	constant.		The	
matter	density	at	other	scale	factors	is	then,	
	

𝜌 𝑡 =
𝜌(𝑡>)
𝑎F 	

	
a)	Use	the	Friedmann	equation	to	show	that	the	evolution	of	the	scale	factor	is	governed	by	
	

𝑑𝑎
𝑑𝑡 =

𝐻>
𝑎
	

	
	
	
	
b)	Hence	show	that	a	ray	of	light	with	redshift	𝑧	has	been	travelling	through	the	Universe	for	
co-ordinate	time	
	

𝑡 =
2
3𝐻>

1 −
1

1 + 𝑧 F/+ 	

	
	
	
	
c)	What	is	the	radial	co-ordinate	of	the	object	that	emitted	this	light	ray?		Use	the	fact	that	
light	rays	travel	with	𝑑𝑠 = 0	to	show	that,	in	this	Universe	with	zero	curvature,	
	

𝑑𝑟
𝑑𝑡 =

𝑐
𝑎	

	
	
	
	
d)	Hence	show	that	
	

𝑟 =
2𝑐
𝐻>

1 −
1
1 + 𝑧

	


