
Cosmology	Week	5	Class	Activities	
	
We’ll	study	these	activities	in	our	Week	5	tutorial	class!	
	

	
	

Cosmological	horizons	
	
The	particle	horizon	distance	𝐷!(𝑡)	at	a	given	cosmic	time	𝑡	is	the	maximum	physical	distance	
between	two	points	that	can	be	linked	with	a	light	ray	between	the	Big	Bang	and	that	time.	
	

a) Why	is	𝐷!(𝑡) ≠ 𝑐𝑡?	
	
Let’s	say	that	the	light	ray	moves	between	comoving	coordinates	𝑟 = 0	and	𝑟 = 𝑟"#$	in	this	time.		
We’ll	assume	a	flat	Universe	(𝐾 = 0)	for	this	calculation.	

	
b) Explain	why	the	physical	distance	between	these	points	is:	𝐷! = 𝑎(𝑡)	𝑟"#$.	

	
c) Light	rays	travel	such	that	𝑑𝑠 = 0.		Use	the	metric	to	show	that	two	nearby	points	along	the	

path	of	the	light	ray	must	be	linked	by:	𝑑𝑟 = 𝑐	𝑑𝑡%/𝑎(𝑡′).	
	

d) Combining	these	two	equations,	show	that	𝐷! = 𝑐	𝑎(𝑡) ∫ &'!
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We’ll	assume	now	that	the	Universe	is	matter-dominated	(which	is	true	for	most	of	its	history),	such	
that	the	Friedmann	equation	can	be	written	as:	
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(assuming	that	the	radiation,	curvature	and	dark	energy	terms	are	negligible).		This	equation	has	the	
solution:	
	

𝑎(𝑡) = 7
39Ω-𝐻+𝑡

2 ;
,/.

	

	
e) Hence	show	that	𝐷! = 3𝑐𝑡.	

	
f) Suppose	that	the	Universe	is	accelerating	in	its	expansion	such	that	𝑎(𝑡) = 𝑒!"('0'").		What	is	

the	horizon	distance	in	between	times	𝑡+	and	a	later	time	𝑡?	
	

	
	

The	horizon	problem	
	
Let’s	now	calculate	the	horizon	distance	when	the	CMB	was	produced.	
	

a) If	Ω- = 0.3	and	𝐻+ = 70	km	s01	Mpc01,	and	the	CMB	was	produced	at	redshift	𝑧 = 1100,	use	
the	formulae	in	the	previous	question	to	find	the	horizon	distance	𝐷! 	at	this	moment,	assuming	
a	matter-dominated	Universe.		Convert	this	distance	to	a	comoving	separation	in	today’s	
Universe.	
	



It’s	interesting	to	compare	this	distance	to	the	physical	separation	of	two	points	𝐴	and	𝐵	on	opposite	
sides	of	the	sky	when	the	CMB	was	produced:	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) Assuming	Ω- = 0.3	and	Ω2 = 0.7,	use	your	cosmology	calculator	from	the	previous	activity	to	
compute	the	comoving	distance	𝑟345 	to	redshift	𝑧 = 1100.	

	
Your	answers	to	parts	a)	and	b)	will	show	that	the	distance	between	points	𝐴	and	𝐵	is	much	larger	
than	the	horizon	distance,	even	though	the	radiation	fields	at	these	points	is	in	mutual	equilibrium.		
This	issue	is	known	as	the	horizon	problem.	
	

c) Explain	how	the	theory	of	inflation	solves	this	problem.	
	

	
	

When	astronomical	objects	collapse	
	
Let’s	investigate	what	type	of	objects	can	form	at	different	times	in	the	Universe!	
	
Let’s	start	near	recombination,	when	the	temperature	of	the	Universe	is	𝑇 = 3000	𝐾	and	the	density	is	
given	by	𝜌 = 𝜌+	(1 + 𝑧). = Ω-	𝜌678'	(1 + 𝑧).,	where	𝑧 = 1100,	Ω- = 0.3	and	𝐻+ = 70	km	s01	Mpc01.	
	

a) Evaluate	the	Jeans	length	at	this	epoch,	𝐿9 ≈ N
:#;
<=-$

	and	hence	the	Jeans	mass	𝑀9 ≈ 𝜌𝐿9..		

Hence,	what	type	of	object	is	able	to	collapse	at	this	time?	
	

b) What	is	the	gravitational	collapse	time	𝑡< ≈
1

><=
	of	this	object?		Hence,	comment	on	the	epoch	

of	the	Universe	by	which	time	this	type	of	object	can	form.	
	
Now	let’s	consider	objects	on	the	other	end	of	the	scale!		Suppose	a	galaxy	cluster	has	a	mass	𝑀 =
101?	𝑀⨀	and	forms	from	material	within	a	radius	of	3	Mpc.	
	

c) Estimate	the	gravitational	collapse	time	of	the	cluster.		Hence,	comment	on	the	epoch	of	the	
Universe	when	we	would	expect	to	see	such	clusters	forming.	

	
	

	
Solving	spherical	collapse	

	
This	is	a	computer-based	activity	which	I	recommend	we	carry	out	using	a	Python	Jupyter	notebook	(as	
widely	used	in	astronomy	research)	–	however,	it	can	be	solved	using	any	programming	language.	
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In	this	activity	we’ll	use	Newton’s	laws	to	calculate	the	evolution	of	a	collapsing	spherical	clump!		The	
situation	is	exactly	like	the	Newtonian	Universe	we	studied	in	Week	1:	
	

	
	
The	edge	of	the	sphere	satisfies	the	equation:	
	

�̈� = −
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The	evolution	of	𝑟(𝑡)	satisfies	the	parametric	equations	in	terms	of	a	variable	𝑝:	
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where	𝑅+	is	the	radius	of	the	clump	when	(if!)	it	reaches	a	maximum,	and	𝜌+	is	its	density	at	this	time	
(such	that	𝑀 = ?

.
𝜋𝑅+.𝜌+).		You	can	prove	these	equations	work	if	you	like!	

	
a) Fixing	the	mass	of	the	clump	to	be	equal	to	a	galaxy	cluster,		𝑀 = 101?	𝑀⨀,	make	a	series	of	

tracks	𝑟(𝑡)	choosing	different	values	𝑅+ = (1,2,3,4,5,10)	Mpc.		Only	plot	a	range	of	times	
corresponding	to	the	age	of	the	Universe,	𝑡(BC = 4.3 × 101D	s.	
	

b) Hence	find	the	maximum	size	of	the	region	which	collapses	to	form	a	cluster	within	the	current	
age	of	the	Universe.	

	
	

	


