Cosmology Week 3 Class Activities

We'll study these activities in our Week 3 tutorial class!

A dark-energy dominated Universe

Suppose that dark energy is the only component of the Universe, such that the density parameters today are $\Omega_m = 0$ and $\Omega_{\Lambda} = 1$. (This is thought to be a good approximation for our own Universe, far into the future!)

- a) Is the spatial geometry of this model universe saddle-like, flat or spherical?
- b) Use the Friedmann equation to show that this model universe expands exponentially, such that

$$a(t) = e^{H_0(t-t_0)}$$

Where H_0 is Hubble's constant and t_0 is the time co-ordinate today.

- c) How does the Hubble parameter vary with time in this model universe?
- d) What is the age of this model universe, in terms of H_0 ?

Assume that $t_0 = 13.7$ Gyr, and $H_0 = 70$ km s⁻¹ Mpc⁻¹. A ray of light is emitted in this model Universe at time $t = t_0/2$, and travels on a radial path to reach r = 0 today.

- e) At what co-moving co-ordinate *r* was the light emitted, in units of Gpc?
- f) What is the redshift of the light when it reaches r = 0?

The coincidence problem

In today's Universe, the density parameters are $\Omega_m = 0.3$ and $\Omega_{\Lambda} = 0.7$. The Universe will transition from its expansion being dominated by matter at early times to dark energy at late times.

- a) At matter-dark energy equality, z_{eq} , the energy density of the matter and dark energy components is equal, $\rho_m(z_{eq}) = \rho_\Lambda(z_{eq})$. What is the value of z_{eq} ?
- b) Write down the Friedmann equation for the scale factor a(t) in a flat Universe, in terms of Ω_m , Ω_Λ and a.
- c) By differentiating this expression, find an expression for the "acceleration" of the expansion, $\ddot{a} = \frac{d^2a}{dt^2}$. At what redshift does $\ddot{a} = 0$?

The fact that the transition between matter domination and dark energy domination is happening relatively close to our existence in the Universe is sometimes called the coincidence problem.

A phantom Universe!

The equation of state of a substance relates the pressure *P* it exerts to its energy density ρc^2 by:

$$P = w \rho c^2$$

Imagine that we discover a weird, new component within the Universe called phantom energy, which has equation of state w = -2! (since we have already found a component with w = -1, maybe it isn't so weird!)

We showed in the class slides that conservation of energy for an expanding substance implies:

$$\frac{d\rho}{dt} + 3H\left(\rho + \frac{P}{c^2}\right) = 0$$

(this is another of those cases where our "simple" calculation miraculously recovers the exact result from General Relativity!)

- a) Show that this phantom energy component with w = -2 evolves such that $\rho(t) \propto a^3$.
- b) The phantom energy component will grow to dominate the Universe. Using the Friedmann equation,

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G \ \rho(t)}{3}$$

how does the scale factor evolve with time into the future, if a = 1 at $t = t_0$ (today)?

c) Show that this Universe has a finite lifetime. How would this Universe appear to observers within it, as this lifetime approaches?

Solving the general Friedmann equation

This is a computer-based activity which I recommend we carry out using a Python Jupyter notebook (as widely used in astronomy research) – however, it can be solved using any programming language.

The Friedmann equation including density parameters for matter (Ω_m), curvature (Ω_K) and dark energy (Ω_Λ) is:

$$\frac{1}{{H_0}^2} \left(\frac{\dot{a}}{a}\right)^2 = \frac{H(a)^2}{{H_0}^2} = \frac{\Omega_m}{a^3} + \frac{\Omega_K}{a^2} + \Omega_\Lambda$$

where $\Omega_m + \Omega_K + \Omega_\Lambda = 1$. Re-arranging the definition $H(a) = \frac{da/dt}{a}$, the cosmic time may be found by solving the integral:

$$t - t_0 = \int_1^a \frac{1}{a H(a)} \, da$$

Write a computer program to recreate the plot we have been considering in class:

