## Cosmology Week 2 Class Activities

We'll study these activities in our Week 2 tutorial class!

## Metric on the surface of a sphere

a) Here is a diagram showing an area element on a spherical surface, depicted using spherical polar coordinates $(r, \theta, \phi)$ :


Use this diagram to explain why the metric on the surface of the sphere is:

$$
d s^{2}=r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

b) Two ants are sitting opposite each other inside a hemispherical bowl of radius 1 m . The lines joining the ants to the centre of the sphere make angles of $60^{\circ}$ with the vertical. The following diagrams show the view from the side and from above:


Ant A is lazy and is wondering, what is the shortest path across the bowl to reach Ant B? Ant A is considering two options. In Path 1, Ant A maintains a fixed $\phi$ co-ordinate and walks across the bottom of the bowl. In Path 2, Ant A maintains a fixed $\theta$ co-ordinate and walks around the bowl at a constant height.

Use the metric of the bowl to find the lengths of Path 1 and Path 2, and determine which is shorter.

## Distances in a matter-dominated Universe

The scale factor of a Universe with zero curvature, which only contains matter, evolves according to:

$$
a(t)=\left(\frac{3 H_{0} t}{2}\right)^{2 / 3}
$$

where Hubble's constant is $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.
a) What is the age of this Universe in units of Gyr?
b) What is the look-back time of a galaxy whose spectrum has redshift $z=1$ ?

The Friedmann-Robertson-Walker (FRW) metric of a Universe with zero curvature takes the form:

$$
d s^{2}=-c^{2} d t^{2}+a(t)^{2}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

where $(r, \theta, \phi)$ are comoving coordinates.
c) The physical distance $D$ between the origin and a galaxy with radial coordinate $r$ is obtained by integrating the metric along the radial path for a snapshot in time ( $d t=0$ ). (We're using the term "physical distance" because there are other definitions of distance that we are about to meet!). Use the FRW metric to show that,

$$
D=a(t) r
$$

d) Light travels between two points in space-time such that $d s=0$. Use the FRW metric to show that the path followed by light travelling from a distant galaxy to the origin satisfies,

$$
\frac{d r}{d t}=-\frac{c}{a(t)}
$$

e) By integrating this equation, and using the relation for $a(t)$ at the beginning, show that the distance-redshift relation in this Universe is:

$$
r=\frac{2 c}{H_{0}}\left(1-\frac{1}{\sqrt{1+z}}\right)
$$

f) What is the comoving coordinate of a galaxy with redshift $z=1$ ?

## Sizes and fluxes in an expanding Universe

In this activity we will continue to analyse the flat, matter-dominated Universe with metric given in the previous question.
a) A luminous object with comoving coordinate $r$ has an angular diameter $\Delta \theta$ as seen on the sky. Use the metric to show that its physical width is: $W=a(t) r \Delta \theta$.
b) A galaxy at redshift $z=1$ has physical size 10 kpc . What is its angular size in units of arcseconds? (Note: there are 3600 arcseconds in 1 degree.)
c) The $z=1$ galaxy contains a billion Suns, where the solar luminosity is $L_{\odot}=3.9 \times 10^{26} \mathrm{~W}$. What is the flux of energy received from this galaxy at the Earth?
d) Galaxies at $z=1$ have an average number density $n=0.001 \mathrm{Mpc}^{-3}$. How many galaxies would we expect to find in a $1 \mathrm{deg}^{2}$ patch of sky with redshifts between $z=0.99$ and $z=1.01$ ?

## A cosmology calculator

This is a computer-based activity which I recommend we carry out using a Python Jupyter notebook (as widely used in astronomy research) - however, it can be solved using any programming language.

Let's create a function or small program which allows you, for the matter-dominated Universe, to input the

- Value of the Hubble constant in $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$
- Redshift
and the program will output, for this redshift, the:
- Scale factor
- Look-back time
- Radial comoving coordinate
- Angular diameter distance
- Luminosity distance
- Angular size of a galaxy with physical (proper) width 10 kpc

