
In this class we will formulate the relations 
between the expansion of the Universe and the 

matter, radiation and dark energy it contains

Honours Cosmology Week 3:
Contents of the Universe



Contents of the Universe

At the end of this week you should be able to …

• … describe the components of energy in the Universe, 
including the properties of dark matter and dark energy

• … link these components to the cosmic expansion rate using 
the Friedmann equation and energy conservation equation

• … analyse these constituents using density parameters, Ω

• … solve for the relations between distance, redshift and 
time in single-component models

• … express components using their equation of state, 𝑤



• In GR, matter tells 
spacetime how to curve

• Therefore, in order to 
understand expanding 
space, we need to 
understand its contents

• Let’s start with dark 
matter – the majority of 
matter in the Universe 
that doesn’t emit light

Contents of the Universe



• You will have already heard about the abundant 
observational evidence for dark matter, including:

Dark matter

Galaxy rotation curves Cluster velocity dispersions

Gravitational lensing CMB physics



Observations and models tell 
us that dark matter is:

• Weakly-interacting

• Non-baryonic

• Cold (i.e. slowly-moving)

However, there is no clear 
candidate within the standard 
model of particle physics!

Dark matter



• Baryonic and dark matter alone cannot explain the 
expansion of the Universe, because we have also 
observed that it is accelerating (more on this later)

• We turn to a new component – dark energy

Dark energy



• Dark energy is an “anti-
gravity” effect originally 
introduced by Einstein

• At this time, which pre-dated 
any observations, Einstein 
favoured a “static Universe” 
which required a component 
of this form to cancel out 
gravitational attraction

• The dark energy field is 
commonly known as the 
cosmological constant, 𝛬

Dark energy



• An effect like Λ is produced 
by the zero-point energy of 
the quantum vacuum (see: 
Casimir effect)

• It’s familiar in physics that the 
overall zero-point of energy can 
be changed without affecting 
the evolution of a system

• But in GR all energy gravitates, 
so a zero-point energy still 
contributes to cosmic expansion

Dark energy



• However, if Λ is really generated by quantum 
fluctuations, its predicted value differs very greatly 
from that measured by cosmological observations

• Another strange aspect: as Λ represents a constant energy 
density, energy is being created as the Universe expands!

Dark energy



• Now let’s link the contents of the Universe to its 
expansion, using the FRW metric.  This relation is 
known as the Friedmann Equation.

• In General Relativity, this is done by solving 
Einstein’s equation of gravitation:

The Friedmann equation

𝐺!" is the 
Einstein tensor, 

which is a 
function of the 

space-time 
metric

𝑇!" is the 
energy-

momentum 
tensor, which 

depends on the 
contents of 
space-time



• We’ll derive the solution to this equation in a 
Newtonian setting, which works remarkably well!

The Friedmann equation
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• This relation is remarkably close to the full GR solution 
containing curvature (𝐾) and dark energy (Λ), which is:
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• The Friedmann Equation is the most important formula in 
cosmology, since it links the expansion rate to the contents

• Note that curvature (𝐾) is determined by the energy content [𝜌(𝑡), 𝛬] 
so these terms cannot be varied completely independently

The Friedmann equation

Expansion rate
(where �̇�/𝑎 is the

Hubble parameter)
Effect of
matter

Effect of
curvature

Effect of
cosmological

constant



• It’s interesting to check how 
the Λ term appears in the 
Newtonian analysis

• Describing the Λ term as a 
“potential energy”, we can 
calculate it looks like an upside-
down harmonic oscillator with 
𝑉 𝑟 = − "

#Λ𝑟
! !

• Hence the Λ term is pushing 
the particle to accelerate away, 
like an uncoiling spring!

The Friedmann equation

The equivalent 
potential to Λ is an 

upside-down parabola, 
like an uncoiling spring



• 𝜌(𝑡) could be matter and/or 
radiation, varying with 𝑎(𝑡) as:

• Matter: 𝜌8 𝑡 = 𝜌9/𝑎:
(since the mass density dilutes as the 
Universe expands)

• Radiation: 𝜌; 𝑡 = 𝜌9/𝑎<
(since the energy density dilutes due to 
both expansion and redshifting of photons)

• Dark energy: 𝜌= 𝑡 = constant 
(since the energy density per unit volume is 
constant)

The Friedmann equation
Matter: the smoothed-out 

distribution of galaxies

Radiation: the CMB 
photons filling the Universe



• Consider a flat matter-dominated Universe:

• The critical density, 𝜌>?@A = 3𝐻95/8𝜋𝐺, is the 
matter density today (when &̇& = 𝐻') of this final case

The critical density

• The expansion equation:
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• 𝐸 > 0:  expansion continues forever

• 𝐸 < 0:  expansion slows down and 
recollapses after a certain time

• 𝐸 = 0:  expansion gradually slows 
and stops after infinite time

Expanding ball of mass, 
current density 𝜌(𝑡&)

If 𝜌 𝑡& = 𝜌'()*, then the 
expansion asymptotically 

slows to zero after 
infinite time!



• Using the critical density, we can define new density 
parameters Ω = (

(!"#$
.  For the various components:

• Using 𝜌) 𝑡 = 𝜌),'/𝑎+ and 𝜌, 𝑡 = 𝜌,,'/𝑎-, the 
Friedmann equation then becomes:
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• Evaluating today: Ω, + Ω) + Ω/ + Ω. = 1 (this constraint 
shows that curvature is determined by the other parameters)

Density parameters
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Matter Radiation Curvature Dark energy



• Let’s consider how the Universe would expand if it 
only consisted of only one of these components 
(we’ll solve some of these cases in class…)

Solutions to the Friedmann equation

Universe 𝛀𝒎 𝛀𝒓 𝛀𝑲 𝛀𝚲 𝒂(𝒕) Name

Matter-
dominated 1 0 0 0 ∝ 𝑡#/% Einstein – de Sitter 

universe

Radiation-
dominated 0 1 0 0 ∝ 𝑡0/#

Empty 0 0 1 0 ∝ 𝑡 Milne universe

Dark-energy 
dominated 0 0 0 1 ∝ 𝑒12 De Sitter space



• We can also solve the Friedmann equation 
numerically for combinations of Ω’s !

Solutions to the Friedmann equation

Ω0 = 0.7

Ω0 = −2

Ω0 = 0



• The different scalings of the energy density in the 
components (𝜌, ∝ 1/𝑎-, 𝜌) ∝ 1/𝑎+, 𝜌/ = const) imply 
that the Universe goes through phases of expansion:

Solutions to the Friedmann equation

Radiation-dominated Matter-dominated Dark energy-dominated
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energy equality



• We can use the Friedmann equation to calculate 
the distance-redshift and time-redshift relations

• Here’s an example for a flat Universe with Ω) = 1

Solutions to the Friedmann equation

• Looking back at Week 2, light travels 
with 𝑑𝑠 = 0, so from the metric we 
can write: 𝑐 𝑑𝑡 = −𝑎 𝑡 𝑑𝑟

• Hence, the coordinate distance 
corresponding to a given travel time 
is: 𝑟 = ∫𝑑𝑟 = 𝑐 ∫!

!! "!
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• We can replace in the integral: 
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given by the Friedmann equation
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• For Ω' = 1, 𝑎 𝑡 = *
,
𝐻(𝑡
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• Hence, 𝑡 = ,
*&!

𝑎*/,

• (We can use 𝑎 = -
-/0

in these equations)



• What does cosmological data currently tell us 
about these density parameters?

Cosmological parameters

We seem to live in a 
Universe with Ω3 ≈
0.3, Ω4 ≈ 0.7 that has 
entered a phase of 
accelerating expansion!

We call it the “𝚲CDM 
Universe”

We’ll learn about these 
different types of 
observations in Week 6!

This dashed 
line has Ω5 = 0



• As the Universe expands, its energy density dilutes

Energy conservation equation

A component of the 
Universe with 
density 𝜌 that 

exerts pressure 𝑃, 
occupies volume 𝑉

and has internal 
energy 𝐸

It expands by 
𝑑𝑉 in time 𝑑𝑡

From thermodynamics, this expansion 
causes the gas to lose internal energy,

𝑑𝐸 = −𝑃 𝑑𝑉 →
𝑑𝐸
𝑑𝑡 = −𝑃

𝑑𝑉
𝑑𝑡

Substituting in this relation:

• 𝐸 𝑡 = 𝑚𝑐# = 𝜌 𝑡 𝑉 𝑡 𝑐#

• 𝑉 𝑡 = 𝑉& 𝑎(𝑡)% (for expansion)

we find, using 𝐻 = �̇�/𝑎,

𝑑𝜌
𝑑𝑡
+ 3𝐻 𝜌 +

𝑃
𝑐!

= 0



• The relation between the pressure 
and density of a substance is 
called its equation of state, 𝑤:

𝑃 = 𝑤𝜌𝑐5

• This allows us to unify the 
different components!

• Substituting in the equation on 
the previous slide:

𝜌 𝑡 = 𝜌9 𝑎V:(WXY)

• Agrees with earlier expressions!

Equation of state
For matter:

𝑤 = 0
Matter is pressureless
because it moves very slowly!

For radiation:

𝑤 =
1
3

You’ll find this relation in the 
kinetic theory of the gases!

For dark energy:

𝑤 = −1
Negative pressure propels the 
expansion to accelerate!



Acceleration equation

• Differentiating the Friedmann equation with respect to time 
and combining it with the energy equation, we find:

�̈�
𝑎
= −

4𝜋𝐺
3

𝜌 +
3𝑃
𝑐!

= −
4𝜋𝐺𝜌
3

1 + 3𝑤

• This result shows that a component of the Universe must 
satisfy 𝑤 < − "

+ for accelerating expansion (�̈� > 0)

• The combination of the Friedmann equation and energy 
conservation equations is a closed set that allows us to 
determine the expansion history of any model



Key take-aways

• The main constituents in the standard model of cosmology 
are radiation, matter, dark energy and curvature

• The Friedmann equation links the expansion of the Universe 
to its matter-energy content (described by Ω parameters)

• Current observational data favours a “𝚲CDM model” where 
Ω) ≈ 0.3, Ω/ ≈ 0.7, Ω. ≈ 0

• In this model, the Universe has different phases of 
domination by radiation, then matter, then dark energy

• All components can be described in terms of an equation of 
state, 𝑤, which links the pressure and energy density


