
This week we’ll explore the space-time metric of 
the Universe, and how it may be used to 
describe cosmic distances and light travel

Honours Cosmology Week 2:
Measuring the Universe



Measuring the Universe

At the end of this week you should be able to …

• … understand how metrics may be used to compute 
distances in a given coordinate system and topology

• … understand the form of the Friedmann-Robertson-Walker 
(FRW) metric of a homogeneous & isotropic Universe

• … use this metric to write down the equation for light 
propagation in an expanding Universe

• … describe different definitions of cosmological distance

• … determine the age of the Universe given the scale factor



• This week we’ll learn about the equations for 
mapping out the Universe – that is, how to relate 
distances, redshifts, angles and light travel time

Measuring the Universe



• Let’s first consider how to measure distances in a 
2D Cartesian space with coordinates (𝑥, 𝑦)

• We break the arc into small pieces: 𝑑𝑠! = 𝑑𝑥! + 𝑑𝑦!

• Integrating along the curve: 𝑠 = ∫"
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• The relation between the line element 𝑑𝑠 and coordinate 
intervals 𝑑𝑥, 𝑑𝑦 is called the metric of the space

Introducing metrics

We parameterize 
the curve as 
[𝑥 𝜆 , 𝑦 𝜆 ]

𝐴

𝐵
Consider a 

curve between 
points 𝐴 and 𝐵:



• The metric depends on the 
chosen co-ordinate system

For 3D Cartesian coordinates, we have:

𝑑𝑠! = 𝑑𝑥! + 𝑑𝑦! + 𝑑𝑧!

Describing exactly the same space with 
spherical polar co-ordinates:

𝑑𝑠! = 𝑑𝑟! + 𝑟! 𝑑𝜃! + sin!𝜃 𝑑𝜙!

Introducing metrics

For example, to calculate the distance to circumnavigate the world from 
Melbourne on a line of constant latitude 𝜃!: 𝑑𝑟 = 0 and 𝑑𝜃 = 0, so

𝑠 = /𝑑𝑠 = 𝑟"#$%& sin 𝜃!/
!

'(
𝑑𝜙 = 2𝜋 𝑟"#$%& sin 𝜃!



• The metric also depends 
on the intrinsic topology of 
the space

• To describe the constant 
curvature surface of a unit 
sphere, we could use spherical 
polar co-ordinates with 𝑟 = 1:

𝑑𝑠! = 𝑑𝜃! + sin!𝜃 𝑑𝜙!

Introducing metrics

• A 2D flat space would be described by 𝑑𝑠! = 𝑑𝜃! + 𝑑𝜙!: 
in this case, the metrics are different but so are the intrinsic 
topologies (curved space vs. flat space)



Curved spaces

• How do curved spaces differ from flat spaces?

• The curvature of a space can be determined by local 
observers without needing to see the space from outside

• In a curved space: parallel lines converge or diverge

• The circumference of a circle ≠ 2𝜋𝑟

• The sum of the angles of a triangle ≠ 180°



• How do we generalise the metric of a constant 
curvature space from 2D, as above, to 3D?

Curved spaces

• A constant curvature 2D surface embedded in a 3D Euclidean space 
satisfies the equation: 𝑥' + 𝑦' + 𝑧' = 1/𝐾 (𝐾 = curvature parameter)

• For a constant curvature 3D surface embedded in a 4D Euclidean space: 
𝑥' + 𝑦' + 𝑧' + 𝑤' = 1/𝐾 (adding the extra co-ordinate 𝑤)

• In the 4D Euclidean space: 𝑑𝑠' = 𝑑𝑥' + 𝑑𝑦' + 𝑑𝑧' + 𝑑𝑤'

• We now transform (𝑥, 𝑦, 𝑧) to spherical polar co-ordinates (𝑟, 𝜃, 𝜙)

• From above: 𝑤' = 1/𝐾 − 𝑟', hence 𝑑𝑤' = )! *)!

+/-.)!

• Putting it all together:   𝑑𝑠' = *)!

+.-)! + 𝑟
' 𝑑𝜃' + sin'𝜃 𝑑𝜙'



• The Universe is described by Einstein’s theory of 
General Relativity, summarised in two phrases:

• We won’t study GR in detail in this module, but 
we’ll use a key aspect of it: the space-time metric

Introducing General Relativity

Space-time tells matter 
how to move

Matter tells space-time 
how to curve



• In relativity, the metric describes separations in 
“space-time” rather than just “space”

• We already know the space-time interval in special relativity 
(invariant for observers in all inertial frames):

𝑑𝑠! = −𝑐!𝑑𝑡! + 𝑑𝑥!

• We obtain the metric of the Universe by replacing 𝑑𝑥 with 
the line element for comoving coordinates of a constant 
curvature space expanding with the Universe

• We must preserve constant curvature to satisfy the 
conditions that the Universe is homogeneous and isotropic

The metric of the Universe



The metric of the Universe

• Combining these results, we obtain the space-time 
metric of the expanding Universe:

𝑑𝑠! = −𝑐!𝑑𝑡! + 𝑎(𝑡)!
𝑑𝑟!

1 − 𝐾𝑟!
+ 𝑟! 𝑑𝜃! + sin!𝜃 𝑑𝜙!

• This form is called the Friedmann-Robertson-
Walker (FRW) metric, after its discoverers

Line element of a space 
with constant curvature 𝐾
in comoving coordinates 
(𝑟, 𝜃, 𝜙)

Multiplied by the cosmic 
scale factor to convert 
comoving coordinates to 
physical separation 

Same term as in special 
relativity, where 𝑡 is the 
time measured by 
fundamental observers



• We can use this space-
time metric to study a 
light ray travelling through 
the Universe on a radial 
path from a galaxy at 
coordinate 𝑟() to 𝑟 = 0

Light travel through the Universe

• Remember from special relativity, light travels between two 
points of space-time such that 𝑑𝑠 = 0

• Since 𝑑𝜃 = 𝑑𝜙 = 0, we find:  𝑐 𝑑𝑡 = − * + $,
-./,!

• Integrating along the path,   ∫+"#
+$%& $+

*(+) =
-
2 ∫3

,"# $,
-./,!

Choosing the 
negative solution of 
the square root, 
since 𝑟 is decreasing



• For a second photon emitted slightly later and following the 
first, we would likewise find:   ∫+"#56+"#

+$%&56+$%& $+
*(+)

= -
2 ∫3

,"# $,
-./,!

• Since the right-hand side of the previous two equations is the 
same, we can conclude:   ∫+"#

+$%& $+
*(+) = ∫+"#56+"#

+$%&56+$%& $+
*(+)

• From which we deduce the key result:   
CD!"#
E D!"#

= CD$%
E D$%

• The time between the photons is inversely proportional to the 
frequency 𝜔 of the light, 𝛿𝑡 ∝ 1/𝜔 ∝ the wavelength 𝜆

• Hence the light is redshifted:   𝜆789 =
*(+$%&)
*(+"#)

𝜆() = 1 + 𝑧 𝜆()

Light travel through the Universe



• How do we describe distances in the expanding 
Universe, from 𝑟 = 0 to a galaxy at coordinate 𝑟?

Distances in expanding space



• The first approach we might consider is evaluating the 
physical distance (or “proper distance”) between the origin 
and the galaxy at a chosen time.  From the metric:

𝑑𝐷 = *(+)
-./,!

𝑑𝑟 (since 𝑑𝜃 = 𝑑𝜙 = 𝑑𝑡 = 0)

• Integrating between 0 and 𝑟 we find results depending on 𝐾:

Distances in expanding space

𝐷 = 𝑎 𝑡 sin.- 𝑟 𝐾 / 𝐾

𝐷 = 𝑎 𝑡 𝑟

𝐷 = 𝑎 𝑡 sinh.- 𝑟 −𝐾 / −𝐾

𝐾 > 0

𝐾 < 0

𝐾 = 0



• However, the physical distance is not a very useful quantity 
in observational cosmology, since we can’t in practice 
arrange for such a measurement to be made!

• How can we actually measure distances?

Distances in expanding space

• A nice method would be to use 
the shift in angular position of 
an object due to the orbit of the 
Earth, called a parallax distance

• However, for cosmological 
distances the angular shift is too 
small, so this also doesn’t work!



• More useful distance measures are based on the 
observed size or brightness of distant objects

Distances in expanding space

Distance 
measurements 
based on the 

size or 
separation of 

distant objects 
produce an 
angular 

diameter 
distance

Distance 
measurements 
based on the 
brightness of 

distant objects 
produce a 

luminosity 
distance



Angular diameter distance

𝐷" (inferred)

𝑊
(known)

∆𝜃
(observed)

• Angular diameter distance 𝐷" is defined using the observed 
angular size Δ𝜃 of an object of known physical width 𝑊

• The angular diameter distance is defined as: 𝐷" = 𝑊/∆𝜃

• From the metric: 𝑊 = 𝑎 𝑡 𝑟 ∆𝜃, where 𝑟 = object coordinate

• Hence:   𝐷F = 𝑎 𝑡GH 𝑟 = I
JKL

(𝑡() = emission time)

• Objects of known physical width 𝑊 are called standard rulers



• Luminosity distance 𝐷: is defined using the flux 𝑓 received 
from an object of known luminosity 𝐿

• The usual “inverse square law” would give us: 𝑓 = :
;<='!

• This motivates our definition: 𝐷: =
:
;<>

Luminosity distance

Luminosity 𝐿
(known)

Flux 𝑓
(observed)

𝐷: (inferred)



• To relate the luminosity distance to the object’s coordinate 𝑟, 
we have to take two cosmological effects into account:

1. Photons lose energy as their wavelength increases owing to the 
expansion of the Universe   [effect ∝ 𝑎(𝑡/0)]

2. The time interval between arriving photons also increases (see the 
calculation on slide 13)   [effect ∝ 𝑎(𝑡/0)]

• Hence, the flux of energy received is: 𝑓 = : *(+"#)!

;<,!

• Hence:   𝐷O =
O

PQR
= I

E(D$%)
= 𝑟 (1 + 𝑧)

• Objects of known luminosity 𝐿 are called standard candles

Luminosity distance



• The volume element in comoving space between coordinates 
𝑟 and 𝑟 + 𝑑𝑟 can also be deduced from the metric:

𝑑𝑉 = 4𝜋𝑟!
𝑑𝑟

1 − 𝐾𝑟!

Volumes

It’s similar to the standard 
result for spherical polar 
coordinates, modified for the 
effect of curvature 

(this formula is 
for the full sky, for 
part of the sky we 
take a fraction)



• The age of the Universe is the 
coordinate time 𝑡 that elapses 
between 𝑎 = 0 and 𝑎 = 1

• As an estimate, we can extrapolate 
today’s expansion rate $*

$+
= 𝐻3:

𝑎 𝑡 = 1 + 𝐻3 𝑡 − 𝑡3

• This leads to an approximate age ≈
-
?(
= Hubble time = 14 Gyr if 𝐻3 =

70 km s.- Mpc.-

Age of the Universe

• More precisely we would have an integral: 𝑡#1/ = ∫𝑑𝑡 = ∫!
+ *2
2 3(2)



• Does an age of ≈ 14 billion years make sense?

Age of the Universe

Geological evidence suggests the 
Earth is ≈ 4.5 billion years old 

Some white dwarf stars are known 
to be ≈ 12 billion years old 

Globular clusters can also be dated 
as ≈ 12 billion years old 

Radioactive dating shows meteorites 
are ≈ 4.5 billion years old 



• To go further in our calculations, we’ll need to 
know how the scale factor 𝑎(𝑡) depends on time

• This depends on the contents of the Universe, 
which we’ll study next week!

Next steps …



Key take-aways

• Metrics of a space allow us to relate distance elements to 
changes in the coordinates of the space

• The Universe is described by combining General Relativity 
with the assumptions of homogeneity and isotropy

• The result is the Friedmann-Robertson-Walker space-time 
metric of the expanding Universe, which is written in terms 
of a constant curvature 𝐾 and scale factor 𝑎(𝑡)

• We can measure distances in cosmology using the 
luminosity distance or angular diameter distance

• The age of the Universe may be deduced as the time 
elapsed between 𝑎 = 0 and 𝑎 = 1


