Cosmology Assignment 3

Weeks 5 & 6: Cosmic Structure and Cosmological Observations

Q1) In a Universe with $\Omega_m = 0.3$ and $H_0 = 70$ km s⁻¹ Mpc⁻¹, an early galaxy at z = 20 can be considered as a sphere containing total mass $10^{10} M_{\odot}$, which is a factor 200 more dense than the Universe as a whole.

- a) What is the radius of this proto-galaxy?
- b) Estimate the dynamical formation time of the galaxy.
- c) Assuming the Universe is matter-dominated, by what redshift will the galaxy have formed?

Q2) The galaxy M81 at 3.5 Mpc is one of the nearest galaxies not bound to the "Local Group". Assuming a cosmology with $\Omega_m = 0$ and $\Omega_{\Lambda} = 1$, which is a good approximation of our own Universe in the distant future, show that in 100 billion years' time, light from M81 will not be able to reach us! You can assume $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

Q3) According to a slightly weird theory, cold dark matter consists of lead balls the size of the Earth randomly distributed across the Universe ($\rho_{\text{Lead}} = 11,300 \text{ kg m}^{-3}$ and $R_{\text{Earth}} = 6378 \text{ km}$).

- a) If $\Omega_{DM} = 0.25$, how many balls will there be per cubic Mpc?
- b) If the lead balls are optically thick, what would be the mean free path of light through the Universe? Can we detect the dark matter in this way?
- c) How would the mean free path depend on the radius of the balls, and what radius would make the Universe opaque to light?
- d) Why is this not a good model for dark matter?

Q4) The process where electrons and positrons annihilate to form photons $(e^+ + e^- \leftrightarrow \gamma + \gamma)$ "freezes out" when the temperature of the Universe is $T = 5 \times 10^9$ K. Assuming that the Universe is radiation-dominated at this time, calculate the age and redshift of this epoch. You can assume the radiation temperature today is 2.73 K and corresponds to a density $\Omega_r = 5.1 \times 10^{-5}$.