Class 8: Tensors

In this class we will explore how general coordinate transformations may be described by a tensor calculus using index notation, leading to a generalized notion of curvature

Class 8: Tensors

At the end of this session you should be able to ...

- ... understand how the Lorentz transformations may be replaced by general co-ordinate transformations
- ... describe why such transformations are fundamental to formulating the laws of physics
- ... apply index notation to manipulate general tensor objects, such as by raising or lowering an index
- ... describe how the notion of parallel-transport in a curved space leads to the generalized Riemann curvature tensor

The laws of physics

- A fundamental idea of Relativity is all reference frames are equally suitable for the formulation of the laws of physics
- A reference frame is a space-time observing system, such as the Earth's frame, or a freely-falling frame, or an inertial frame in SR

The laws of physics

- Physics does not depend on our choice of co-ordinate frame
- An equation representing a physical law in co-ordinate frame x, such as $A^{\mu}=B^{\mu}$, must transform to a different frame x^{\prime} such that $A^{\prime \mu}=B^{\prime \mu}$
- We need some powerful mathematics to ensure that this will happen - this is the mathematics of tensor calculus

Man, I love tensors - they're just so easy!

There is something wrong in this piture-can you spot it?

Answer:- no-one has ever said this in the history of time. Ever.

Special Relativity recap

- In Special Relativity we introduced the idea of a 4-vector, a group of four quantities A^{μ} whose values in 2 inertial frames are related by the Lorentz transformations:

$$
A^{\prime \mu}=L^{\mu}{ }_{v} A^{v} \quad L^{\mu}{ }_{v}=\left(\begin{array}{cccc}
\gamma & -v \gamma / c & 0 & 0 \\
-v \gamma / c & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- It was convenient for us to define a "down" 4-vector A_{μ} :

$$
\begin{aligned}
& A_{\mu}=\eta_{\mu \nu} A^{v} \\
& A^{\mu}=\eta^{\mu \nu} A_{\nu}
\end{aligned} \quad \eta_{\mu \nu}=\eta^{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- This is because $A^{\mu} A_{\mu}$ is an invariant

General transformations

- The Lorentz transformation between inertial frames is a special case - we must develop mathematics to describe an arbitrary transformation between $\mathbf{2}$ co-ordinate frames (e.g. the Earth's frame, and a freely-falling frame)
- A co-ordinate transformation provides relations for some x^{\prime} co-ordinates in terms of x co-ordinates, $x^{\prime}=f(x)$

General transformations

- We start by transforming simple differentials and gradients using the chain rule: $d x^{\prime \mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} d x^{\nu}$ and $\frac{\partial f}{\partial x^{\prime \mu}}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} \frac{\partial f}{\partial x^{\nu}}$
- Using this template ...
- A "general up 4-vector" A^{μ} is an array whose values in the 2 frames are related by: $A^{\prime \mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} A^{\nu}$ (the Lorentz transformation is a special case of this with $x^{\prime \mu}=L^{\mu}{ }_{v} x^{v}$)
- A "general down 4-vector" A_{μ} is an array whose values in the 2 frames are related by: $A_{\mu}^{\prime}=\frac{\partial x^{\nu}}{\partial x^{\prime \mu}} A_{\nu}$

General transformations

- The general transformation of an "up" index to a "down" index uses the space-time metric:

$$
A_{\mu}=g_{\mu \nu} A^{v} \quad A^{\mu}=g^{\mu \nu} A_{\nu}
$$

- $g^{\boldsymbol{\mu} \nu}$ is the inverse matrix of $\boldsymbol{g}_{\boldsymbol{\mu} \boldsymbol{v}}$, since applying both of these operations in turn to A^{μ} must restore the original quantity
- In an inertial or freely-falling frame, $g_{\mu \nu}=\eta_{\mu \nu}$, and we recover the previous rules for raising/lowering an index

Tensors

- Some physical quantities are grouped into larger structures
- More generally, a tensor $A^{\mu \nu}$ transforms between 2 frames as:

$$
A^{\prime \mu \nu}=\frac{\partial x^{\prime \mu}}{\partial x^{\kappa}} \frac{\partial x^{\prime \nu}}{\partial x^{\lambda}} A^{\kappa \lambda} \quad A^{\prime}{ }_{\mu \nu}=\frac{\partial x^{\kappa}}{\partial x^{\prime \mu}} \frac{\partial x^{\lambda}}{\partial x^{\prime \nu}} A_{\kappa \lambda}
$$

- We raise and lower indices using the metric, for example:

$$
\begin{gathered}
A_{\lambda}{ }^{v}=g_{\lambda \mu} A^{\mu \nu} \\
A_{\lambda}^{\mu}=g_{\lambda \nu} A^{\mu \nu} \\
A_{\kappa \lambda}=g_{\kappa \mu} g_{\lambda \nu} A^{\mu \nu}
\end{gathered}
$$

- We can generalize these relations to higher dimensions

Tensors

With this mathematical apparatus in hand we can derive a number of useful relations of tensor calculus:

- If $A^{\mu}=B^{\mu}$ then, in any other frame, $A^{\prime \mu}=B^{\prime \mu}$
- $A^{\mu} B^{v}$ is a tensor $C^{\mu \nu}$
- $A^{\mu} B_{\mu}$ is a scalar invariant in all frames
- $C^{\mu \nu} A_{v}$ is a 4-vector D^{μ}
- We can re-arrange summed indices, e.g. $A^{\mu} B_{\mu}=A_{\mu} B^{\mu}$

We have already met some tensors in the course, such as $g_{\mu v}$ and $T_{\mu \nu}$. We are about to meet some more!

General description of curvature

- How can we describe the curvature of a region of space?
- On the surface of a sphere, carry an arrow from the Equator to the Pole and back on a path $A \rightarrow N \rightarrow B \rightarrow A$ shown below
- Suppose we parallel-transport the arrow, meaning that its components are unchanged in a local Cartesian system

> Vectors paralleltransported around a closed path on a curved surface are rotated!

General description of curvature

- Suppose you are at a point x^{μ} in space-time
- Travel in direction i until your co-ordinate x^{i} is increased by a small amount $d x^{i}$, without changing the other co-ordinates
- Now travel in direction j until co-ordinate x^{j} is increased by $d x^{j}$, without changing the other co-ordinates
- Now move backwards by $-d x^{i}$
- Finally, move backwards by $-d x^{j}$
- You are, of course, back at x^{μ} !

The Riemann tensor

- Now travel the same route again, parallel-transporting a vector A^{k} which initially points in direction k
- Vectors parallel-transported around a closed path in a curved surface are rotated - let the change in each component be $d A^{l}$
- This thought experiment allows us to define the Riemann tensor $\boldsymbol{R}_{\lambda \mu \nu}^{\kappa}$, which provides a general measure of curvature:

$$
d A^{l}=R_{k i j}^{l} A^{k} d x^{i} d x^{j}
$$

- The Riemann tensor may be expressed in terms of the Christoffel symbols: $R_{\lambda \mu \nu}^{\kappa}=\partial_{\mu} \Gamma_{\lambda \nu}^{\kappa}-\partial_{\nu} \Gamma_{\lambda \mu}^{\kappa}+\Gamma_{\mu \alpha}^{\kappa} \Gamma_{\lambda \nu}^{\alpha}-\Gamma_{\nu \alpha}^{\kappa} \Gamma_{\lambda \mu}^{\alpha}$

The Riemann tensor

- In an N-dimensional space, we have N^{2} possible loops, and N final components of N initial vectors, i.e. N^{4} components at each point, $=256$ for $N=4!$!
- It is not that bad, owing to symmetries (e.g., going backwards round the loop). Actually, the number of independent components is $N^{2}\left(N^{2}-1\right) / 12$
- So the curvature at each point is described by 1 number when $N=2$ (on a 2D curved surface), and 20 numbers when $N=4$

