
Class	8:	Tensors

In	this	class	we	will	explore	how	general	co-
ordinate	transformations	may	be	described	by	a	
tensor	calculus	using	index	notation,	leading	to	

a	generalized	notion	of	curvature



Class	8:	Tensors

At	the	end	of	this	session	you	should	be	able	to	…

• … understand	how	the	Lorentz	transformations	may	be	
replaced	by	general	co-ordinate	transformations

• ...	describe	why	such	transformations	are	fundamental	to	
formulating	the	laws	of	physics

• … apply	index	notation	to	manipulate	general	tensor	objects,	
such	as	by	raising	or	lowering	an	index

• … describe	how	the	notion	of	parallel-transport	in	a	curved	
space	leads	to	the	generalized	Riemann	curvature	tensor



The	laws	of	physics

• A	fundamental	idea	of	Relativity	is	all	reference	frames	are	
equally	suitable	for	the	formulation	of	the	laws	of	physics

• A	reference	frame	is	a	space-time	observing	system,	such	as	
the	Earth’s	frame,	or	a	freely-falling	frame,	or	an	inertial	
frame	in	SR



The	laws	of	physics

• Physics	does	not	depend	on	our	
choice	of	co-ordinate	frame

• An	equation	representing	a	
physical	law	in	co-ordinate	frame	
𝑥,	such	as	𝐴# = 𝐵#,	must	
transform	to	a	different	frame	𝑥′
such	that	𝐴′# = 𝐵′#

• We	need	some	powerful	
mathematics	to	ensure	that	this	
will	happen	– this	is	the	
mathematics	of	tensor	calculus

https://comic.hmp.is.it/comic/tensor-calculus/



Special	Relativity	recap

• In	Special	Relativity	we	introduced	the	idea	of	a	4-vector,	a	
group	of	four	quantities	𝐴# whose	values	in	2	inertial	
frames	are	related	by	the	Lorentz	transformations:

• It	was	convenient	for	us	to	define	a	“down”	4-vector	𝐴#:

• This	is	because	𝐴#𝐴# is	an	invariant
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General	transformations

• The	Lorentz	transformation	between	inertial	frames	is	a	
special	case	– we	must	develop	mathematics	to	describe	an	
arbitrary	transformation	between	2	co-ordinate	frames (e.g.	
the	Earth’s	frame,	and	a	freely-falling	frame)

• A	co-ordinate	transformation	provides	relations	for	some	𝑥′
co-ordinates	in	terms	of	𝑥 co-ordinates,	𝑥2 = 𝑓(𝑥)

https://math.stackexchange.com/questions/1228106/how-
can-i-transform-coordinate-systems-based-on-quaternion-data



General	transformations

• We	start	by	transforming	simple	differentials	and	gradients	

using	the	chain	rule:	𝑑𝑥′# = 789:

78;
	𝑑𝑥( and	 7<
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= 78;

789:
	 7<
78;

• Using	this	template	…

• A	“general	up	4-vector”	𝐴# is	an	array	whose	values	in	the	2	

frames	are	related	by:	𝑨′𝝁 = 𝝏𝒙9𝝁

𝝏𝒙𝝂
	𝑨𝝂 (the	Lorentz	

transformation	is	a	special	case	of	this	with	𝑥′# = 𝐿#(	𝑥()

• A	“general	down	4-vector”	𝐴# is	an	array	whose	values	in	the	

2	frames	are	related	by:	𝑨′𝝁 =
𝝏𝒙𝝂

𝝏𝒙9𝝁
	𝑨𝝂



General	transformations

• The	general	transformation	of	an	“up”	index	to	a	“down”	
index	uses	the	space-time	metric:

• 𝒈𝝁𝝂 is	the	inverse	matrix	of	𝒈𝝁𝝂,	since	applying	both	of	these	
operations	in	turn	to	𝐴# must	restore	the	original	quantity

• In	an	inertial	or	freely-falling	frame,	𝑔#( = 𝜂#(,	and	we	
recover	the	previous	rules	for	raising/lowering	an	index

𝐴# = 𝑔#(	𝐴( 𝐴# = 𝑔#(	𝐴(



Tensors

• Some	physical	quantities	are	grouped	into	larger	structures

• More	generally,	a	tensor 𝐴#( transforms	between	2	frames	as:

• We	raise	and	lower	indices	using	the	metric,	for	example:

• We	can	generalize	these	relations	to	higher	dimensions
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Tensors

With	this	mathematical	apparatus	in	hand	we	can	derive	a	
number	of	useful	relations	of	tensor	calculus:

• If	𝐴# = 𝐵# then,	in	any	other	frame,	𝐴′# = 𝐵′#

• 𝐴#𝐵( is	a	tensor	𝐶#(

• 𝐴#𝐵# is	a	scalar	invariant	in	all	frames

• 𝐶#(𝐴( is	a	4-vector	𝐷#

• We	can	re-arrange	summed	indices,	e.g.	𝐴#𝐵# = 𝐴#𝐵#

We	have	already	met	some	tensors	in	the	course,	such	as	𝑔#(
and	𝑇#(.		We	are	about	to	meet	some	more!



General	description	of	curvature

• How	can	we	describe	the	curvature	of	a	region	of	space?

• On	the	surface	of	a	sphere,	carry	an	arrow	from	the	Equator	
to	the	Pole	and	back	on	a	path	𝐴 → 𝑁 → 𝐵 → 𝐴 shown	below

• Suppose	we	parallel-transport the	arrow,	meaning	that	its	
components	are	unchanged	in	a	local	Cartesian	system	

https://commons.wikimedia.org/wiki/File:Parallel_transport.png

Vectors	parallel-
transported	around	a	
closed	path	on	a	curved	
surface	are	rotated!



General	description	of	curvature

• Suppose	you	are	at	a	point	𝑥# in	space-time

• Travel	in	direction	𝑖 until	your	co-ordinate	𝑥M is	increased	by	a	
small	amount	𝑑𝑥M,	without	changing	the	other	co-ordinates

• Now	travel	in	direction	𝑗 until	co-ordinate	𝑥O is	increased	by	
𝑑𝑥O,	without	changing	the	other	co-ordinates

• Now	move	backwards	by	−𝑑𝑥M

• Finally,	move	backwards	by	−𝑑𝑥O

• You	are,	of	course,	back	at	𝑥#! 𝑑𝑥M

𝑑𝑥O



• Now	travel	the	same	route	again,	parallel-transporting	a	
vector	𝐴P which	initially	points	in	direction	𝑘

• Vectors	parallel-transported	around	a	closed	path	in	a	curved	
surface	are	rotated	– let	the	change	in	each	component	be	𝑑𝐴R

• This	thought	experiment	allows	us	to	define	the	Riemann	
tensor	𝑹𝝀𝝁𝝂𝜿 ,	which	provides	a	general	measure	of	curvature:

• The	Riemann	tensor	may	be	expressed	in	terms	of	the	
Christoffel symbols: 𝑅F#(

E = 𝜕#ΓF(
E − 𝜕(ΓF#

E + Γ#YE ΓF(
Y − Γ(YE ΓF#

Y

𝑑𝐴R = 𝑅PMOR 	𝐴P	𝑑𝑥M	𝑑𝑥O

The	Riemann	tensor



The	Riemann	tensor

• In	an	𝑁-dimensional	space,	we	have	𝑁Z

possible	loops,	and	𝑁 final	components	
of	𝑁 initial	vectors,	i.e.	𝑁[ components	
at	each	point,	= 256 for	𝑁 = 4!!

• It	is	not	that	bad,	owing	to	symmetries	
(e.g.,	going	backwards	round	the	loop).		
Actually,	the	number	of	independent	
components	is	𝑵𝟐(𝑵𝟐 − 𝟏)/𝟏𝟐

• So	the	curvature	at	each	point	is	
described	by	1	number	when	𝑁 = 2
(on	a	2D	curved	surface),	and	20	
numbers	when	𝑁 = 4


