Class 6: Curved Space and Metrics

In this class we will discuss the meaning of spatial curvature, how distances in a curved space can be measured using a metric, and how this is connected to gravity

Class 6: Curved Space and Metrics

At the end of this session you should be able to ...

- ... describe the geometrical properties of curved spaces compared to flat spaces, and how observers can determine whether or not their space is curved
- ... know how the metric of a space is defined, and how the metric can be used to compute distances and areas
- ... make the connection between space-time curvature and gravity
- ... apply the space-time metric for Special Relativity and General Relativity to determine proper times and distances

Properties of curved spaces

- In the last Class we discussed that, according to the Equivalence Principle, objects "move in straight lines in a curved space-time", in the presence of a gravitational field
- So, what is a straight line on a curved surface? We can define it as the shortest distance between 2 points, which mathematicians call a geodesic

https://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/non_Euclid_curved/index.html https://www.quora.com/What-are-the-reasons-that-flight-paths-especially-for-long-haul-flights-are-seen-as-curves-rather-than-straight-lines-on-a-screen-Is-map-distortion-the-only-reason-Or-do-flight-paths-consider-the-rotation-of-the-Earth

Properties of curved spaces

Equivalently, a geodesic is a path that would be travelled by an ant walking straight ahead on the surface!

http://astronomy.nmsu.edu/geas/lectures/lecture28/slide03.html

- Consider two ants starting from different points on the Equator, both walking North
- These geodesics are both "straight lines", but they are converging
- Parallel lines converge or diverge on a curved surface

Properties of curved spaces

Some other counter-intuitive properties of curved surfaces:

- The circumference of a circle of radius r is not $2 \pi r$
- The area of a circle of radius r is not πr^{2}
- The angles of a triangle do not add up to 180°

http://people.virginia.edu/~dmw8f/astr5630/Topic16/t16_circumference.html

Properties of curved spaces

- It's easy to visualize curvature by thinking of a 2D curved surface embedded in a 3D Euclidean space
- However, curvature is intrinsic to a surface and can be determined without external reference - Earth dwellers can know the Earth is curved without seeing it from space!

Properties of curved spaces

- Zooming into a small region, a curved surface is locally flat (just as a page of an atlas represents a piece of the globe)

https://ned.ipac.caltech.edu/level5/March05/Guth/Guth1.html
It's analogous to calculus, where we build curves out of straight lines ...

http://tutorial.math.lamar.edu/Classes/Calcll/ArcLength.aspx

Curvature and gravity

- What has this got to do with gravity?
- Gravity can be represented as the curvature of space-time
- Objects travel on a geodesic in the curved space-time, that extremizes the space-time interval between the two points

Curvature and gravity

- Other forces cause particles to deviate from geodesics e.g., if 2 ants on a curved surface are connected by a solid bar, the force would push them off their geodesics

- Just as a curved surface is locally flat, a curved space-time can locally be described by an inertial frame (of a freelyfalling observer), but there is no extended inertial frame

The metric of a space

- How do we measure lengths and angles in a Cartesian space with co-ordinates (x, y) ?

- Breaking the arc into small pieces: $d s^{2}=d x^{2}+d y^{2}$

$$
s=\int_{A}^{B} \sqrt{\left(\frac{d x}{d \lambda}\right)^{2}+\left(\frac{d y}{d \lambda}\right)^{2}} d \lambda \quad \begin{aligned}
& \lambda \text { parameterizes the } \\
& \text { curve [i.e., } x(\lambda), y(\lambda)]
\end{aligned}
$$

The metric of a space

- What happens in a tilted co-ordinate system?

- Using the summation convention, this can be written as $d s^{2}=g_{i j} d x^{i} d x^{j}$ where $g_{i j}$ is the metric of the space
- In this case, $g_{11}=1, g_{22}=1, g_{12}=g_{21}=-\cos \theta$

The metric of a space

- This example shows that the metric determines the geometry, but the geometry does not determine the metric
- For a given geometry, we can generate many possible metrics through co-ordinate transformations

For example - Cartesian and polar co-ordinates

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}=(d r)^{2}+r^{2}(d \phi)^{2}
$$

- The metric encodes information about both the geometry and the co-ordinate system

How do we define curvature?

- How can observers on a surface quantify the amount of curvature at a point?

https://starchild.gsfc.nasa.gov/docs/StarChild/questions/question35.html
- Move a geodesic distance ε in all directions to form a "circle" in the space and measure its area A
- The curvature at a point is then $\lim _{\varepsilon \rightarrow 0}\left[\frac{12}{\varepsilon^{2}}\left(1-\frac{A}{\pi \varepsilon^{2}}\right)\right]$

The space-time metric

- The metric of space-time tell us how to measure the spacetime interval between events (i.e., proper times/distances)
- Special Relativity: $d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$ where $\eta_{\mu \nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
- Note that this geometry is not Euclidean because $\eta_{00}=-1$ (the locus of events separated by constant $d s$ is a hyperbola, not a circle) - it is known as a "Minkowski geometry"
- In General Relativity, in a frame containing a gravitational field with curved space-time, $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$ where $g_{\mu \nu}$ is the space-time metric - a more complicated function of x^{μ}

The space-time metric

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- What is the structure of this function $g_{\mu \nu}$? It's a matrix, where each element is a function of the co-ordinates x^{μ}
- μ and v run over 4 indices but, from the above equation, the metric must be symmetric ($g_{\mu \nu}=g_{\nu \mu}$), so there are 10 functions in general - this is why GR is complicated!!

The space-time metric

- Consider a clock at rest in the Earth's frame, which ticks every $d t$ seconds. Is this a proper time interval $d \tau$?
- No, because the clock is not in an inertial frame (it is not freely falling)
- The space-time interval between the ticks is $d s^{2}=g_{00}\left(x^{i}\right)(c d t)^{2}$, since $d x^{i}=0$
- Since $d s^{2}=-c^{2} d \tau^{2}$, the proper time interval is $d \tau=\sqrt{-g_{00}\left(x^{i}\right)} d t$
- Time runs differently at each point of a gravitational field

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{v}
$$

The space-time metric

- A concrete example is a weak gravitational field with potential $\phi(\vec{x})$
- We will show later in the course that: $g_{00}(\vec{x})=-1-2 \phi / c^{2}$
- At height h in a simple vertical gravitational field, $\phi=g h$
- So the ticking period of the clock varies as $d t=d \tau / \sqrt{1+2 g h / c^{2}}$

$$
d \tau=\sqrt{-g_{00}(\vec{x})} d t
$$

What determines the metric?

- The question "what determines the space-time metric" is the same question as - "what generates gravity". The answer is the distribution of matter and energy

- Later in the course, we will study the equation which links the space-time curvature to the distribution of matter

