Class 11: Cosmology

In this class we will explore how General
Relativity can be applied to the expansion of the
Universe, linking its development from the Big
Bang to the matter-energy it contains




Class 11: Cosmology

At the end of this session you should be able to ...

e ...understand how the cosmological principle leads to the
space-time metric of a homogeneous and isotropic Universe

... use geodesics of light rays to show that light is redshifted
as it propagates in an expanding Universe

... describe different definitions of cosmological distance

... link the expansion of the Universe to its matter-energy
content and curvature using Einstein’s equation

... calculate the look-back time and distance to a galaxy



The cosmological principle

* There is another situation in which the equations of GR can
be solved: cosmological observations of the Universe

Dark Energy
Accelerated Expansion
Afterglow Light \

Pattern Dark Ages Development of
375,000 yrs.

The Universe is
expanding from
a Hot Big Bang!

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

https://en.wikipedia.org/wiki/Chronology_of the_universe



The cosmological principle

e Although the Universe is irregular in detail, we can “smooth
out” its contents into a set of space-filling particles which
are uniformly expanding in all directions

http://wise2.ipac.caltech.edu/staff/jarrett/ngss/wise_LSS.html http://background.uchicago.edu/~whu/intermediate/map2.html

* These are the assumptions of homogeneity and isotropy,
together known as the cosmological principle



The cosmological principle

* Homogeneity means that the properties of the Universe
are the same in every location

* Isotropy means that the properties of the Universe are the
same in every direction

Homogeneous but not isotropic Isotropic but not homogeneous

http://www.astro.ucla.edu/~wright/cosmo_01.htm



The cosmological principle

* Why is this such a powerful assumption?

* Suppose each of these space-filling particles carries a
“fundamental observer” — by homogeneity, the experience
of each of these observers is identical

* Any part of the Universe is representative of the whole —
homogeneous Universes can be studied locally

* There is an absolute cosmic time — the proper time for
each fundamental observer — for which the Universe itself
acts as the synchronization agent



The metric of the Universe

 What do these symmetries imply about the space-time
metric of the expanding Universe? It must take the form ...

ds* = —c?dt* + a(t)?dl?

AN

This piece ensures that the
Universe remains homogeneous
and isotropic as it expands, with
all distances simply scaling as
a(t), the cosmic scale factor

This piece because cosmic
time t is just proper time T
for fundamental observers
(which have dl = 0)




The metric of the Universe

Now let’s think about the form of the proper separation dl
Homogeneity and isotropy imply that the curvature of
space must everywhere be equal and independent of

orientation, so can be written as a single number K

The curvature can be flat (K = 0), positive or negative

Positive Curvature Negative Curvature Flat Curvature

http://abyss.uoregon.edu/~js/cosmo/lectures/lec15.html



The metric of the Universe

We can derive the form of dl by analogy with the 2D surface
of a sphere embedded in a 3D Euclidean space, which
satisfies the equation x? + y? + z? = 1/K

For a constant curvature 3D surface embedded in a 4D
Euclidean space: x* + y? + z? + w? = 1/K

In the 4D Euclidean space: dI* = dx? + dy? + dz* + dw?

Transform (x, vy, z) to spherical polar co-ordinates (7, 8, ¢)

r2 dr?
1/K-1?2

From above: w? = 1/K — r?, hence dw? =

2
Putting it all together: d[? = % + r2(d6* + (sin8 d¢)?)



The metric of the Universe

The assumptions of homogeneity and isotropy, allowing for
constant curvature K, produce the Robertson-Walker metric

2

ds® = —c?dt? t)?
S c + a(t) T oo

+1r2(d0? + (sin B)?*d¢?)

The co-ordinates (7, 8, ¢) are fixed for “fundamental
observers” who measure proper time ¢t

These are also known as co-moving observers, since they
expand with the Universe

The non-zero metric elements are hence g = —1, g, =

2
1a—(l?rz’ oo = a(t)*r* and gpg = a(t)*r*(sin )




Hubble’s Law

* The proper distance L between any 2 fundamental observers,
separated by co-ordinate distance [, increases as L(t) = a(t) [

. L . dL  d da/dt
* The rate of increase of this distance is — &4 [ = a/
d dt a(t)

* Hence the speed of recession is proportional to distance

Red shift = . .
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http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/hubble.html



Hubble’s Law

* Hubble’s Law has been beautifully confirmed by measuring
distances and recession velocities of nearby galaxies:
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https://ned.ipac.caltech.edu/level5/Tyson/Tyson2.html

The velocities are deduced from Doppler shift in spectral lines



Redshifting

* The frequency w of a

light ray, travelling in expanding space

with scale factor a(t), changes such that w «< 1/a

* This behaviour is called redshifting of light, where redshift z
is defined as the ratio of emission/observation frequencies

14+2z=

Wemitted Qobserved

Wopserved Aemitted

Redshift of light from
distant galaxies can
be measured from
the frequencies of

spectral lines

http://www.space-exploratorium.com/doppler-shift.htm



Redshifting

* |In a crude analogy, the wavelength of light is stretching with
the expansion of the Universe

http://scienceblogs.com/startswithabang/2014/11/01/ask-
ethan-60-why-is-the-universes-energy-disappearing-synopsis/

* More accurately, we can think of the light undergoing many
small Doppler shifts between pairs of fundamental observers,
or travelling along a geodesic in expanding space-time



Distances in expanding space

* Now let’s consider how to measure distances in the
expanding Universe, from r = 0 to a galaxy at co-ordinate r

https://www.nasa.gov/mission_pages/spitzer/multimedia/pial5818.html



Distances in expanding space

* Now let’s consider how to measure distances in the
expanding Universe, from r = 0 to a galaxy at co-ordinate r

* The proper distance L is the distance measured if, at the
same cosmic time t, a chain of fundamental observers to the
galaxy added up their infinitesimal proper separations

* dL = /g, dr = % (since df = d¢ = 0)

* Integrating: L = a(t) sin Y (rVK)/VK K>0
L=a(t)r K =
L =a(t) sinh_l(r\/—K)/\/—K K<0




Distances in expanding space

* The proper distance is not very useful in observational
cosmology, since we can’t measure it! More useful measures
are the luminosity distance and angular diameter distance

— Angular
Luminosity diameter
distance distance

https://www.nasa.gov/mission_pages/galex/pial4095.html



Distances in expanding space

Angular diameter distance: a light source at co-ordinate r
has proper diameter D and apparent angular size A8

The angular diameter distance is defined as: d, = D /A0

From the metric: D = AL = a(t) r A6

Hence d, = a(t,,,) T, where t,, is the light emission time



Distances in expanding space

Luminosity distance: consider photons emitted by a distant
galaxy, travelling to our telescopes. What is the equivalent of
the “inverse square law”?

light intensity %
Va

3

Since frequency w « 1/a, photons lose energy as they travel

The co-ordinate time interval changes between the photons

_ tops dt _ 1 (0 d
Why? Since ds = 0, we know that ft Obs% =2, \/#
em em -



Distances in expanding space

o tops dt _ _ topstOtops dt nd
So, | —~ = constant = ftem+6tem ~5, for the 2™ photon

Stobs — é‘tem
a(tops) a(tem)

* This implies that

* Each photon decreases in energy by a(t.,,,)/a(t,ps), and
the time between them increases by the same factor

L a(tem)2
412

* The flux of energy received is f =

L
* The luminosity distance is defined by d; = |[— = 4

At f a(tem)




Matter-energy in the Universe

* We now relate the expansion of the Universe to its matter-
energy content

r Decelerating Universes n Coasting Universe Accelerating Universe
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A decelerating universe reaches its current size in the least amount
of time. The universe could eventually contract and collapse into a
LI n . o . . . .

big crunch” or expand indefinitely. A coasting universe (center) is
older than a decelerating universe because it takes more time to
reach its present size, and expands forever. An accelerating universe
(right) is older still. The rate of expansion actually increases because
of a repulsive force that pushes galaxies apart.

https://www.spacetelescope.org/images/opo9919k/




Matter-energy in the Universe

* This is done via Einstein’s equation from the previous class:

1 8tG

Ruv - ERguv — C_4Tuv

* The metric g,y is given by

2

1 — Kr?

ds® = —c?dt* + a(t)* [ + 1r%(df8? + (sin H)qubz)]

 We won’t go through the algebra of computing the Ricci
tensor Ry, from g,,, but the non-zero components are:

3d a a 2 ZKCZ Gii
R =~ Ru= E-I_Z(E) " a? | c?




Matter-energy in the Universe

 What is the energy-momentum tensor of the homogeneous
and isotropic Universe? We will consider 2 components ...

* First, the smoothly distributed particles filling the Universe
contain an energy density, but no pressure, such that

Too = p(t) c? Tothers = 0

* Second, it turns out that empty space contains an energy
density (the “cosmological constant”) that is required to
describe our observations

Tuv = A Iuv



The Friedmann equation

* We can use Einstein’s Equation to derive the Friedmann
Equation, which describes the expansion of the Universe in
terms of its matter-energy content:

(d)z ~ 8nGp(t) Kc? N Ac?
/ T K ~
Expansion rate / \ Effect of

(where a/a is the Effect of Effect of cosmoltogltcal
Hubble parameter) matter curvature constan




Density parameters

We normalize the scale factor such that today, a = 1, with
today’s density as py and Hubble parameter as H,

Ac?
— Kc? +T

The Friedmann equation today: H,”> = BTGP

: : . : 3
It’s convenient to define the critical density p.,.;; = ﬁ and
the dimensionless density parameters
0 p 8nGp 0 Kc? 0 Ac?
" Perit 3H02 HOZ 3H02

These are hence related conveniently by (),,, + O + O, =1



Density parameters

* We also note that as the Universe expands, the matter density
dilutes: p(t) = py/a> —the A density doesn’t!

| o 1 (a\* _ Qm , Ok
* The Friedmann equationisthen:— | —| = + + (Op
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Dark Matter + Dark Energy
affect the expansion of the universe

The expansion history of
the Universe depends on
the values of (),, and (0,
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http://www.preposterousuniverse.com/blog/2006
/01/26/the-future-of-the-universe/ 0
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