

The Kunlun Infrared Sky Survey (KISS) with AST3-NIR Camera

Jessica Zheng

KISS

First comprehensive exploration of **time varying Universe** in the Infrared

- 2MASS, time sensitive
- SkyMapper, infrared

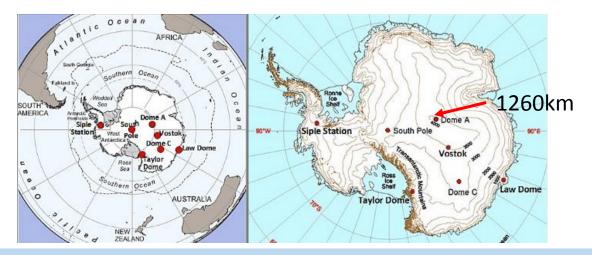
Science

- Star formation
- Brown Dwarf & Hot Jupiters
- > Supernovae
- Exoplanets around M Dwarfs
- Fast Transients, Fast Radio Bursts, and Gravitational Wave Sources
- Reverberation Mapping of Active Galactic Nuclei(AGN)
- Gamma Ray Bursts
- The cosmic Infrared Background

* Burton, M. G., Zheng, J., Mould, J., Cooke, J., Ireland, M., Uddin, S. A., Zhang H., Yuan, X., Lawrence, J., Ashley, M. C. B., "Scientific goals of the Kunlun Infrared Sky Survey (KISS)," Publ. Astron. Soc. Aust. 33, DOI: <u>10.1017/pasa.2016.38</u>

AST3-NIR Camera and KISS

- One of AST3 dedicated to conduct the Kunlun infrared sky survey at Kdark(KISS).
- > Technical concept developed during early 2014.
- China responsible for telescope hardware and control, logistics, deployment.
- Australia responsible for instrument hardware and control, and power generation system.
- Project Kick-off meeting happened during 2015 International Collaboration Meeting on Antarctic Survey Telescopes (AST3), March, Hong Kong 2015.
- > The telescope is already **built and** is now **being tested at NIAOT.**



Why in Antarctic?

- > Australia has a long history in Antarctic Astrophysics
- Existing China-Australia collaboration in Astronomy
- The ARC LIEF grant 2014(PI: Jeremy Mould)
- □ Continuous observing time > 3 months during winter
- Low temperature and sky background in infrared
- □ 2.4µm: longest wavelength from the Earth, deep imaging
- Less cloud, Low turbulence boundary layers, and large Isoplanatic angle
- Dry air, high transmission in infrared

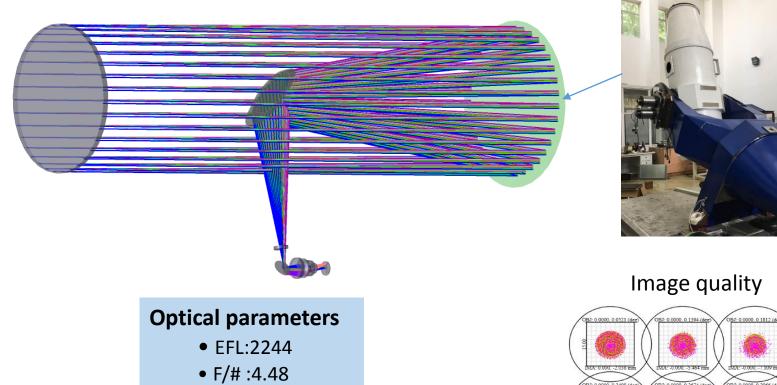
The Major Challenges

Geographically

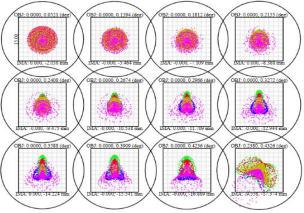
- High altitude: 4094m
- Low pressure: 570hPa
- Extreme low temperature & large temp difference
- Harsh weather conditions: snow, ice, radiation

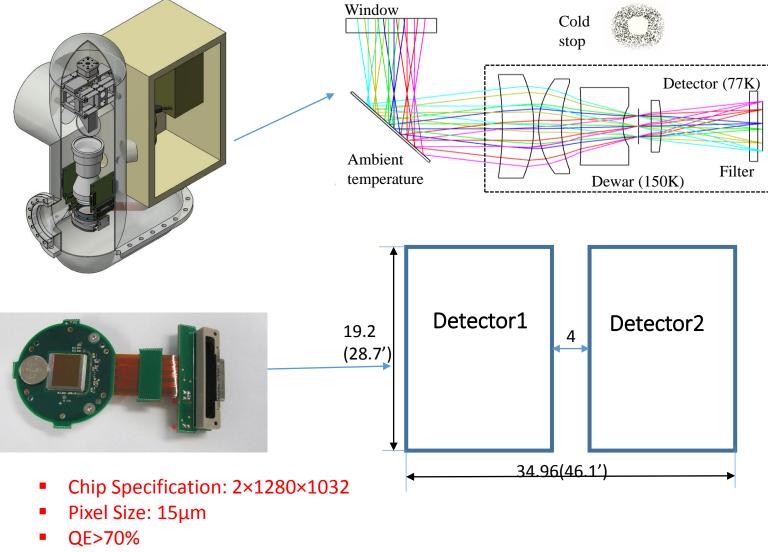
Administration:

- Transportation: complicated & limited support
- Installation/testing: limited working time/facilities
- Operation: low-bandwidth communication link
- Logistics: limited summer support, no winter-over
- Multiple parties

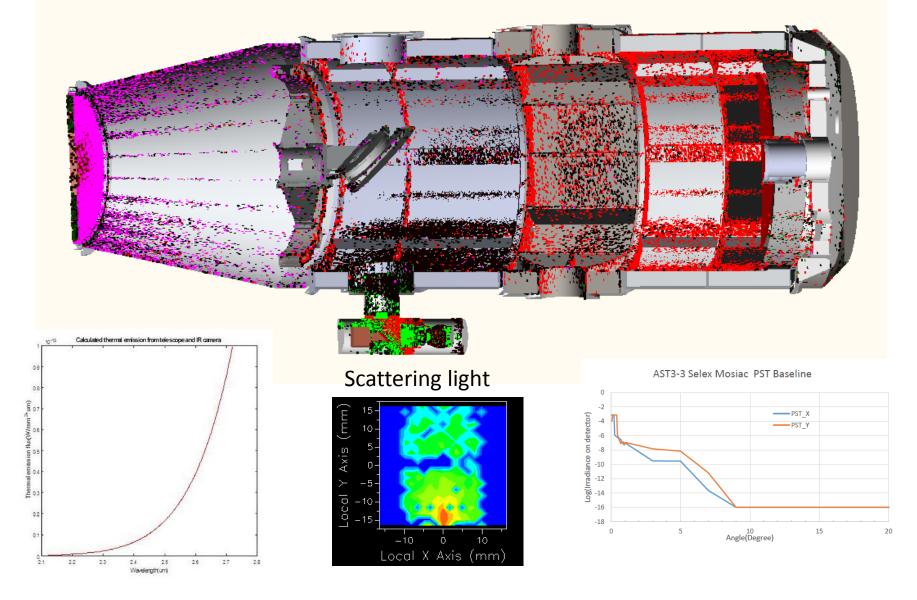

Key Parameters

Parameter	Value
λ ($\Delta\lambda$)	2.375(0.23) μm (K _{dark})
Pupil	50cm
Image Quality	1.9"(1.1 x diffraction limit + tolerance and seeing)
Array	1280 x 1032, 15µm pixels Leonardo detector, mosaic.
Sampling	1.35" pixels
Field of View(FOV)	~28.7´ x 46.1´
Assuming: Background Sky [South Pole]	$K_{dark} = 17.0 \text{ mags/arc}^2 = 100 \mu Jy/arc^2$
Achieving:	
Background limited integration time	228 secs(200K)
1σ 30×2 seconds	18.2 mags. [Vega magnitudes].
10σ 1 hour	21.4 mags.
Saturation limit (in 60 sec)	K _{dark} = 10.7 mags.


Optical and Mechanical Layout of AST3-3 NIR Camera


Operation parameters

- Pixel Scale: 1.35"/pixel(Averaged over the FOV)
- Field of view : 28.71'×46.08'
- The gap of the FOV: 6'(4mm mounting gap)


AST3-NIR Camera

 Read Noise: 9e- and 30e-(Fowler and CDS read out mode)

Thermal Emission

→ AXO-

Filter Optimization

Mag:18.5 Ambient temp:200 K; Seeing0.5 2.5 0.6 Center Wavelength(um) Center Wavelength: 2.375um • 2.45 Bandwidth: 0.25um • 0.5 2.4 • 0.23 2.3772 2.35 0.4 2.3 0.3 2.25 0.2 2.2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Bandwidth(um) 2.0 2.2 2.6 2.8 2.4 1.0 3.0 e-v^a Best Filter K_{dark}—band 2.5 log_{to}Intensity (μ Jy/arcsec²) 0.8 2.0 0.6 0.6 Lransmission Brightness 1.5 Therm elescope 1.0 Trans tmospheric Quantum Efficier 0.2 0.5 0.0 0.0 2.2 2.6 2.8 2.4 2.0 wavelength (μ m)

*Li, Y., Zheng, J., Tuthill, P., et al. "Optimising the K dark filter for the Kunlun Infrared Sky Survey". 2016, PASA, 33, e008

AST3-NIR Camera Exposure Time Calculator

KISS Camera Exposure	e Time Calculator	
Target flux distribution: Object magnitude: Observation Wavelength(um):	18.5 2.375	SNR VS magnitude of star,observation time:300s, ambient temp:200K, zenith:0 deg _{Source: AST3-3 IR Camera}
Target geometory: Target geometory Point source 🗸		750 음
CCD parameters: Pixel size(um): Dark current(e^-1/s): Read noise(e^-1/s): Quantum_efficiency: Full Well Depth: SNR(defined by user): Exposure time(s,defined by user):	18 1 3 0.7 80000 10 300	500 9 regions 250 0 12 13 14 15 16 17 18 19 20 Magnitude of object
Sky conditions: Seeing(arcsec):	0.5	SNR Highcharts.co
Sky background Mag	16.89	
Instrument setup: Start wavelength(um): Stop wavelength(um): Ambient temperature(k):	2.25 2.5 200	Exposure time VS magnitude of star,SNR:10, ambient temp:200K, zenith:0 deg Source: AST3-3 IR Camera
Zenith distance(degree):	0	ن ۲ ۲ ۲ ۲ ۲ ۲ ۲
Calculation results Results:		20k int annse 10k
Calculate Photons from object(/s): Photons from sky(/px/s):	3.467 27.838	0
Photons from thermal(/px/s): Exposure time(s, At Given SNR): SNR(At Given Exposure Time):	1.030 1785.913	12 13 14 15 16 17 18 19 20 Magnitude of object
Max exposure time(s, Half of Full well depth):	4.097 1317.278	- Exposure times

http://newt.phys.unsw.edu.au/~mcba/ETC_WebModel/TELESCOPE.html

Special Design Considerations

Environmental protection

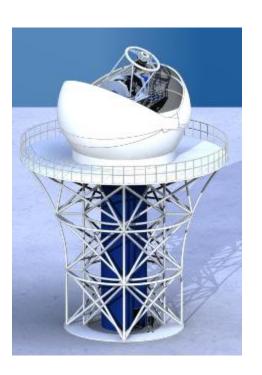
- > The telescope tube shall be sealed..
- > Air within the telescope enclosure shall be left to track external ambient temperature.
- > Heaters shall be provided .
- > ITO coated front window is needed to defrost.

Be operated fully remotely

Careful engineering

- Modular design
- > Hardware redundancies throughout system
- > Data pipeline must include on-site reduction
- Data security and storage
- > The instrument dewar vacuum >12months
- Auto-monitoring

Where Are We Now?



	Milestone Completion	Due Date
1	Preliminary discussions with DoS re: ITAR	Jan-15
2	Project Kick-off (Meeting in Hong Kong)	Mar-15
3	Detector & Interface Specification	Jul-15
4	Requirements Review	Aug-15
5	RFQ Teledyne	Aug-15
6	Contract Negotiation (Detector)	Sep-15
7	Purchase Order (Detector)	Oct-15
8	CDR (De-Scope Option)	Dec-15
9	Final Design Review	Apr-16
10	Procurement Lead-time (Detector)	Nov-16
11	Telescope shipped to Australia	Dec-16
12	Float Procurement Lead-time (Detector)	Jan-17
13	AIT @ AAO Facility (location TBD)	Feb June
N	A Schedule Float	~4 months
14	Camera Pre Delivery Review	Late 2017
15	Shipping to Antarctica	Nov. 2017
16	Commissioning	Jan. 2018
17	Science Survey commences	Feb. 2018

Commissioning: 2019??

IR detector purchasing difficulty

The Next: KDUST Instrumentation

Parameter	Value
Aperture	2.5m
FOV	1.5
Bands	Optical: 0.4μm ~1μm Infrared: 1μm ~2.5μm
Resolution	<0.2" in optical
Tower	15m, above the turbulence layer
Power	15kW, Peak 20kW
Mode	Unattended and remote control

- Australian consortium AAO, UNSW, ANU, the design and construction of the KDUST optical camera.
- Building an infrared instrument for KDUST.

