Synthetic Telescopes

Geraint F. Lewis
University of Sydney
The Virtual Observatory

An ambitious program to bring the wealth of all observational data to all astronomers.
The Virtual Observatory

An ambitious program to bring the wealth of all observational data to all astronomers.

If a particular dataset is not present, how can it be obtained?
The Virtual Observatory

An ambitious program to bring the wealth of all observational data to all astronomers.

If a particular dataset is not present, how can it be obtained?

Automatic requests to telescopes.
The Virtual Observatory

An ambitious program to bring the wealth of all observational data to all astronomers.

If a particular dataset is not present, how can it be obtained?

Automatic requests to telescopes.

What role can theoretical astrophysics play?
Theory VO
Theory VO

- Making theoretical models available to all
Theory VO

- Making theoretical models available to all
- More than a data and software repository
Theory VO

- Making theoretical models available to all
- More than a data and software repository
- Provide analysis and visualization tools
Theory VO

- Making theoretical models available to all
- More than a data and software repository
- Provide analysis and visualization tools
- The ability to make mock observations of theoretical models
Mock Observations

What could you do with synthetic datasets?
Mock Observations

What could you do with synthetic datasets?

Traditional Astronomy:
The sky is observed, data is reduced and some quantity is measured.
Mock Observations

What could you do with synthetic datasets?

Traditional Astronomy:
The sky is observed, data is reduced and some quantity is measured.

A process is modeled and some quantity (not always observable) is published.
Mock Observations

What could you do with synthetic datasets?

Traditional Astronomy:
The sky is observed, data is reduced and some quantity is measured.

A process is modeled and some quantity (not always observable) is published.

How do you effectively make comparisons?
The Inversion Problem

Determination of physical parameters from noisy data;
The Inversion Problem

Determination of physical parameters from noisy data;

- Computationally intensive
The Inversion Problem

Determination of physical parameters from noisy data;

- Computationally intensive
- Non-unique
The Inversion Problem

Determination of physical parameters from noisy data;

- Computationally intensive
- Non-unique
- Often ill-posed
The Inversion Problem

Determination of physical parameters from noisy data;

- Computationally intensive
- Non-unique
- Often ill-posed

Small amounts of noise make it impossible to distinguish between radically different models.
Forward Modelling

Here, a theoretical model for an emission process is folded through the response function.
Forward Modelling

Here, a theoretical model for an emission process is folded through the response function.

Comparison can then be made in the observational domain.
Forward Modelling

Here, a theoretical model for an emission process is folded through the response function.

Comparison can then be made in the observational domain.

Simple example:

Model data $+$ Convolution : Real data
Real data $+$ Deconvolution : Model data
Real & Fake
Real & Fake
A Synthetic Telescope

If I wished to purchase an amateur telescope, how would I choose what I want?
A Synthetic Telescope

If I wished to purchase an amateur telescope, how would I choose what I want?

A synthetic telescope
A Synthetic Telescope

If I wished to purchase an amateur telescope, how would I choose what I want?

A synthetic telescope

How do we build a synthetic telescope for professional astronomical research?

Thanks to Vince McIntyre
A Real Telescope

The complexity of real observations;
A Real Telescope

The complexity of real observations;

- Different technology (& language!) for different wavelengths
A Real Telescope

The complexity of real observations;

- Different technology (& language!) for different wavelengths
- Photometry, spectroscopy & polarization
A Real Telescope

The complexity of real observations;

- Different technology (and language!) for different wavelengths
- Photometry, spectroscopy & polarization
- Complexity of instrumentation
A Real Telescope

The complexity of real observations:

- Different technology (& language!) for different wavelengths
- Photometry, spectroscopy & polarization
- Complexity of instrumentation
- Variety of reduction techniques
A Real Telescope

The complexity of real observations;

- Different technology (& language!) for different wavelengths
- Photometry, spectroscopy & polarization
- Complexity of instrumentation
- Variety of reduction techniques
- Different interpretations of the same datasets
A Synthetic Telescope

A simplistic view of observational astronomy;
A Synthetic Telescope

A simplistic view of observational astronomy;

“It’s just collecting and sorting of photons, isn’t it?”
A Synthetic Telescope

A simplistic view of observational astronomy;

“It’s just collecting and sorting of photons, isn’t it?”

While being simplistic, it may be a starting point for building synthetic versions of real telescopes & instrumentation.
Further Complications

Most telescopes provide signal-to-noise calculators that produce a *zeroth order* synthetic observation.
Further Complications

Most telescopes provide signal-to-noise calculators that produce a *zeroth order* synthetic observation.

Realistic mock observations, however, need to consider a number of additional issues.
Further Complications

Most telescopes provide signal-to-noise calculators that produce a zeroth order synthetic observation. Realistic mock observations, however, need to consider a number of additional issues:

- Seeing functions are never Gaussian.
Further Complications

Most telescopes provide signal-to-noise calculators that produce a *zeroth order* synthetic observation.

Realistic mock observations, however, need to consider a number of additional issues:

- Seeing functions are never Gaussian
- Response is rarely linear
Further Complications

Most telescopes provide signal-to-noise calculators that produce a *zeroth order* synthetic observation.

Realistic mock observations, however, need to consider a number of additional issues:

- Seeing functions are never Gaussian
- Response is rarely linear
- Noise is never Poisson-like (Poissonic?)
A real ROSAT image
Simulation Complexity

Theoretical astrophysics; a range of activities.
Simulation Complexity

Theoretical astrophysics; a range of activities.

● ‘Paper & Pen’ theorists
Simulation Complexity

Theoretical astrophysics; a range of activities.

- ‘Paper & Pen’ theorists
- Numerical analysis
Simulation Complexity

Theoretical astrophysics; a range of activities.

- ‘Paper & Pen’ theorists
- Numerical analysis
- Numerical & semi-analytic simulations
Simulation Complexity

Theoretical astrophysics; a range of activities.

- ‘Paper & Pen’ theorists
- Numerical analysis
- Numerical & semi-analytic simulations

There is no *defined* standard for accommodating theoretical results.
VO Compliance

Some standard is required for the inclusion of theoretical models within the VO.
VO Compliance

Some standard is required for the inclusion of theoretical models within the VO.

This standard should incorporate the information required to produce synthetic observations.
VO Compliance

Some standard is required for the inclusion of theoretical models within the VO.

This standard should incorporate the information required to produce synthetic observations.

‘Physical interface’ which turns the models into an emitted spectral signature.
A tool for the comparison of data and models
• A tool for the comparison of data and models
• Also decide what telescope is best for a particular observation
What would future telescopes see?

A range of telescopes will be coming on-line, including James Webb/NGST, LOFAR + SKA, Eddington etc
What would future telescopes see?

A range of telescopes will be coming on-line, including James Webb/NGST, LOFAR + SKA, Eddington etc

A common question is; Just what will these telescopes see?
SKA view of the sky

By Willis (DRAO); 1arcmin to 0.1μJy at 1.4GHz in 9hrs
Why would you want to?

Synthetic observations: complex & time consuming
Why would you want to?

Synthetic observations: complex & time consuming

- Theoretical results will be available to the wider community and in a more versatile form.
Why would you want to?

Synthetic observations: complex & time consuming

- Theoretical results will be available to the wider community and in a more versatile form.
- Powerful interface between observational and theoretical astronomy.
Why would you want to?

Synthetic observations: complex & time consuming

- Theoretical results will be available to the wider community and in a more versatile form.
- Powerful interface between observational and theoretical astronomy.
- Faces same problem as overall VO program: who pays for the good of the community?
Theory VO
Theory VO

Currently, the inclusion of theoretical models within the Virtual Observatory is very poorly defined.
Currently, the inclusion of theoretical models within the Virtual Observatory is very poorly defined.

Interest from both observers and theorists (VC^3, Victoria 2000)
Theory VO

Currently, the inclusion of theoretical models within the Virtual Observatory is very poorly defined.

Interest from both observers and theorists (VC^3, Victoria 2000)

Faces different problems to the "observational VO" program.
Theory VO

Currently, the inclusion of theoretical models within the Virtual Observatory is very poorly defined.

Interest from both observers and theorists (VC^3, Victoria 2000)

Faces different problems to the “observational VO” program.

Great opportunity for Australian astronomy to get involved (ARC?).