High-resolution N-body Simulations of Galactic Cannibalism

The Magellanic Stream

Tim Connors*
Dr. D. Kawata
Prof. B. Gibson
*tconnors@astro.swin.edu.au
Swinburne University of Technology

July 9, 2004

Abstract

Through the investigation of the closest obvious group of interacting galaxies, the Magellanic Clouds and the Milky Way Galaxy, we hope to understand the process of hierarchical clustering in detail.
1. Introduction

1.1. Introduction – Magellanic System

Magellanic System is Large and Small Magellanic Clouds and the spectacular gas streams – MS and LAF.

Close example of Galactic Cannibalism – an example of Hierarchical Clustering.

Putman et al. (1998)
1. Introduction

1.1. Introduction – Magellanic System

Magellanic System is Large and Small Magellanic Clouds and the spectacular gas streams – MS and LAF.

Close example of Galactic Cannibalism – an example of Hierarchical Clustering.

Putman et al. (1998)

Favourable position ⇒ Best chance of untangling physics, as can resolve individual stars, proper motions and distances.
1. Introduction

1.1. Introduction – Magellanic System

Magellanic System is Large and Small Magellanic Clouds and the spectacular gas streams – MS and LAF.

Close example of Galactic Cannibalism – an example of Hierarchical Clustering.

Putman et al. (1998)

Favourable position ⇒ Best chance of untangling physics, as can resolve individual stars, proper motions and distances. Not a stellar stream; shaped by hydrodynamical & tidal forces.
1.2. Motivation

Best laboratory for study of

- Formation of tidal streams
- Effect of interaction and SNe feedback on SF in cannibalised dwarfs.

We are trying to construct self-consistent chemo-dynamical model of SMC in particular
1.2. Motivation

Best laboratory for study of

- Formation of tidal streams
- Effect of interaction and SNe feedback on SF in cannibalised dwarfs.

We are trying to construct self-consistent chemo-dynamical model of SMC in particular

First, this study allows us to hunt down allowable parameters

We investigate how pure tidal forces influence stream, and find what the formation process of Magellanic Stream is
2. N-body simulation of SMC and Magellanic Stream

Backwards integrate orbit using modified Noguchi’s (1996) ubiquitous code.
GalactICs produces self-consistent N-body Initial Conditions for the SMC disk in equilibrium
2. N-body simulation of SMC and Magellanic Stream

Backwards integrate orbit using modified Noguchi’s (1996) ubiquitous code. **GalactICs** produces self-consistent N-body Initial Conditions for the SMC disk in equilibrium.

Only SMC is live. MW/LMC \rightarrow fixed potential, following orbit.
2. N-body simulation of SMC and Magellanic Stream

Backwards integrate orbit using modified Noguchi’s (1996) ubiquitous code. **GalactICs** produces self-consistent N-body Initial Conditions for the SMC disk in equilibrium.

Only SMC is live. MW/LMC → fixed potential, following orbit.

Use **GCD+**: 3D vector/parallel tree N-body/SPH code: Includes hydrodynamics, radiative cooling, star formation, SNe feedback, metal enrichment.
3. Modelling Strategy

A step-by-step model construction

A: N-body model of SMC

N-body is fast: Parameter search required over many undetermined quantities
3. Modelling Strategy

A step-by-step model construction

A: N-body model of SMC
 N-body is fast: Parameter search required over many undetermined quantities

Almost completed — Connors et al. 2004 already published

B: Include hydrodynamics/Star Formation/Chemodynamical evolution
 Based on best model determined in A, find star formation history within SMC
 SNe feedback is most complicated and poorly understood
 SMC is good laboratory for such study
4. Parameter survey

Best model determined by both spatial and kinematical agreement with:
4. Parameter survey

Best model determined by both spatial and kinematical agreement with:

Survey performed in N-dimensional parameter space:

- *radius* of SMC disk
4. Parameter survey

Best model determined by **both spatial and kinematical** agreement with:

Survey performed in **N-dimensional parameter space**:

- **radius** of SMC disk
- **mass** of LMC (orbit changes)
4. Parameter survey

Best model determined by both spatial and kinematical agreement with:

Survey performed in N-dimensional parameter space:

- **radius** of SMC disk
- **mass** of LMC (orbit changes)
- **geometrical angle** angle SMC disk
4. Parameter survey

Best model determined by both spatial and kinematical agreement with:

Survey performed in N-dimensional parameter space:

- **radius** of SMC disk
- **mass** of LMC (orbit changes)
- **geometrical angle** angle SMC disk
- mass of SMC disk / mass of SMC halo
5. **Best model: HI column density**

Quantitative comparison with observation: HIPASS data cube courtesy of Mary Putman; added Northern Extension
5. **Best model**: HI column density

Quantitative comparison with observation: HIPASS data cube courtesy of Mary Putman; added Northern Extension:

Observation ⇔ Simulation (ZEA coordinates)

Overall features of LAF and MS reproduced
5. Best model: HI column density

Quantitative comparison with observation: HIPASS data cube courtesy of Mary Putman; added Northern Extension:

Observation \leftrightarrow Simulation (ZEA coordinates)

Overall features of LAF and MS reproduced

For the first time, actual quantitative comparisons reveal problems
5. Best model: HI column density

Quantitative comparison with observation: HIPASS data cube courtesy of Mary Putman; added Northern Extension:

Overall features of LAF and MS reproduced

For the first time, actual quantitative comparisons reveal problems:
MS and LAF density/length/angle are not perfect
5. Best model: HI column density

Quantitative comparison with observation: HIPASS data cube courtesy of Mary Putman; added Northern Extension:

![Graphs showing quantitative comparison between observation and simulation](image)

Observation ⇔ **Simulation** (ZEA coordinates)

Overall features of LAF and MS reproduced

For the first time, actual **quantitative comparisons** reveal problems:

MS and LAF density/length/angle are not perfect

Adding drag (ram pressure from Galaxy halo) may fix these.
6. Best model: Kinematics ("v_{Sub}")

800 km s$^{-1}$ velocity LSR range: Too hard to see any small scale differences

Subtract trend from observational data equally Velocity in

$V_{SUB} = V_{GSR} - V_{MAG}$.
6. **Best model:** Kinematics ("v_{Sub}")

800 km s$^{-1}$ velocity LSR range: Too hard to see any small scale differences

Subtract trend from observational data equally. Velocity in $V_{SUB} = V_{GSR} - V_{MAG}$:

![Observation](image1.png) ![Simulation](image2.png)

Observation
Mostly consistent, except for residuals around LAF
7. **Best model:** Kinematics (\(v_{\text{LSR}} \text{ vs } l_{\text{Mag}}\))

Another projection:

Observation

Simulation: Clear bifurcation in \(v_{\text{LSR}} \text{ vs } l_{\text{Mag}}\) - not so clear in low resolution simulations

Observations: Difficult to tell: Christian Br"uns has same data with different reduction technique
8. Hydro/Star formation

No stars observed in MS and LAF
8. Hydro/Star formation

No stars observed in MS and LAF

Features similar to N-body
8. Hydro/Star formation

No stars observed in MS and LAF

Features similar to N-body

More analysis in progress
9. Conclusions

First ever fully quantitative rather than qualitative comparison between detailed observations and simulation
9. Conclusions

First ever fully quantitative rather than qualitative comparison between detailed observations and simulation

Extensive parameter survey found best model (radius, M_{LMC}, and angle important)
9. Conclusions

First ever fully quantitative rather than qualitative comparison between detailed observations and simulation

Extensive parameter survey found best model (radius, M_{LMC}, and angle important)

Very high resolution simulations, subsequent subtle features apparent
9. Conclusions

First ever fully quantitative rather than qualitative comparison between detailed observations and simulation

Extensive parameter survey found best model (radius, \(M_{LMC}\), and angle important)

Very high resolution simulations, subsequent subtle features apparent

N-body parameter survey nearing completion, leads to full gas treatment
Introduction
N-body simulation of...
Modelling Strategy
Parameter survey
Best model: HI...
Best model:...
Best model:...
Hydro/Star formation
Conclusions
Magellanic Stream in HI
Magellanic Stream in HI

N-body simulation of...
Modelling Strategy
Parameter survey
Best model: HI...
Best model:...
Best model:..
Hydro/Star formation

Conclusions
Two theories - tidal and ram pressure stripping
Two theories - tidal and ram pressure stripping
Two theories - tidal and ram pressure stripping

Noguchi 1999; Yoshizawa & Noguchi 2003

Gardiner Noguchi 1996 (re-rendered)
Two theories - tidal and ram pressure stripping

Noguchi 1999;
Yoshizawa &
Noguchi 2003

Two theories - tidal and ram pressure stripping

Noguchi 1999; Yoshizawa & Noguchi 2003

LAF \Rightarrow Ram pressure not quite dead yet

Gardiner Noguchi 1996 (re-rendered)
Two theories - tidal and ram pressure stripping

Noguchi 1999; Yoshizawa & Noguchi 2003

LAF \Rightarrow Ram pressure not quite dead yet:
Mastropietro et al. 2004

Gardiner Noguchi 1996 (re-rendered)
Movie of low res MS
Full sky image of the HVCs.
Introduction
N-body simulation of...
Modelling Strategy
Parameter survey
Best model: HI...
Best model:...
Best model:...
Best model:...
Hydro/Star formation
Conclusions
Introduction
N-body simulation of . . .
Modelling Strategy
Parameter survey
Best model: HI . . .
Best model: . . .
Best model: . . .
Hydro/Star formation
Conclusions
Center of Mass
SMC orbit
LMC orbit
disk particles
First, the radius (5.5 kpc – fiducial)
First, the radius (4.5 kpc – small)
First, the radius (3.0 kpc – smaller)
First, the radius (5.5 kpc – fiducial again)
First, the radius (7.0 kpc – larger)
Then, the mass of LMC \((2 \times 10^{10} M_\odot \text{ – fiducial})\)
Then, the mass of LMC \(\left(1 \times 10^{10} M_\odot \right) \)
Then, angle of SMC disk – 2 degrees freedom (45, 210° – fiducial)
Then, the angle of SMC \((30, 210° – \text{only } 15° \text{ different})\)