

Multi-Object Adaptive Optics (MOAO)

Demonstration Instrument Subaru Telescope

Richard West

Adaptive Optics Lab

Herzberg Institute Subaru Observatory Astronomical Institute Institut National d'Optique

- Introduction
- MOAO demonstration on Subaru 2014/2015.
- AO review.
- Why build this demonstrator?
- What's next?

RAVEN

What's in an image

Image Blurred by atmospheric effects.

Image corrected by a TT mirror

Image further corrected by a DM

Equivalent HST image

Adaptive optics increases peak intensity of a point source

Why Build a RAVEN Demonstrator?

- AO Successful on large telescopes, but small images (10 arcsecs). Good for Stars – Galaxies?
- GMT, E-ELT, TMT need MOAO to be fully utilized.
- Raven demonstrated MOAO AND did science tasks.

AO – Key Elements

LGSコーン効果の低減: LTAO

AO tomography: measure turbulence and correct for "cone effect"

one laser guide star

Without tomography

multiple laser guide stars

With tomography

With AO tomography, measure 3D distribution of turbulence above telescope

Credit: ESO web page

Raven System Block Diagram

MOAO: Multi-Object AO

WFS (Shack Hartman)

DM's

- Mirror Tilt/Tip (T/T)
- Mirror surface deformed by actuators (DM)
- Raven's DM's have both T/T and DM

RAVEN Pick-Off arms in Light Beam

MOAO

- Multiple NGS's
- Multiple LGS's
- Multiple WFS's
- Multiple DM's
- Multiple Pick-off mirrors
- Multiple Science measurements

Pick Off Arms

OL WFS Prototype

RAVEN optical bench

Final assembly

Ch#1 Ch#2 arcsec. 0.5 IRC\$ slit No AO EE=12% Ch#1 Ch#2 arcsec. IRC\$ slit 0.5 GLAO EE=17% Ch#1 Ch#2 arcsec. IRCS slit 0.5 MOAO EE=25% Ch#1 Ch#2 arcsec. 0.5 IRC\$ slit . **SCAO** EE=41%

Results

Overview

- One small target at a time limits observing efficiency.
- Next generation of large telescopes (GMT,E-ELT, & TMT) will need AO over large fields of view. Hence MOAO systems.
- Such MOAO systems "might have on the order of 8
 LGS sensors and 20 science pick-off arms" (Andersen
 2014).
- Raven has demonstrated feasibility.
- Raven did this and performed science tasks!
- HIA and UVIC are part of the TMT Team!

Cooled Enclosure with Calibration Unit, 3 Instruments, and Support Structure

Questions? Comments!

References

- Brent Ellerbroek, TMT Early Light Adaptive Optics, TMT @ SPIE 2010, San Diego, June 26, 2010, TMT.AOS.PRE. 10.054.REL01
 - http://web.uvic.ca/~ravenmoa/
 - http://web.uvic.ca/~ravenmoa/Blog.html
 - http://www.subarutelescope.org/Topics/2014/08/26/index.html
 - http://www.nrc-cnrc.gc.ca/eng/rd/nsi/
 - http://web.uvic.ca/lacir/optics/
 - http://planetimager.org/
- http://astroherzberg.org/projects/
- John Bochanski Next Generation AO http://www.skyandtelescope.com/astronomy-news/next-gen-adaptive-optics-09092014/
- https://en.wikipedia.org/wiki/Twinkling
- https://en.wikipedia.org/wiki/Deformable_mirror
- https://en.wikipedia.org/wiki/Microelectromechanical_systems
- https://en.wikipedia.org/wiki/Shack%E2%80%93Hartmann_wavefront_sensor
- https://en.wikipedia.org/wiki/Wavefront_sensor
- http://www.ctio.noao.edu/~atokovin/tutorial/part3/wfs.html