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ABSTRACT

We present precise measurements of the growth rate of cosmic structure for the redshift
range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of
the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10%
in four independent redshift bins, are well-fit by a flat ΛCDM cosmological model
with matter density parameter Ωm = 0.27. Our analysis hence indicates that this
model provides a self-consistent description of the growth of cosmic structure through
large-scale perturbations and the homogeneous cosmic expansion mapped by super-
novae and baryon acoustic oscillations. We achieve robust results by systematically
comparing our data with several different models of the quasi-linear growth of struc-
ture including empirical models, fitting formulae calibrated to N-body simulations,
and perturbation theory techniques. We extract the first measurements of the power
spectrum of the velocity divergence field, Pθθ(k), as a function of redshift (under the

assumption that Pgθ(k) = −

√

Pgg(k)Pθθ(k) where g is the galaxy overdensity field),
and demonstrate that the WiggleZ galaxy-mass cross-correlation is consistent with
a deterministic (rather than stochastic) scale-independent bias model for WiggleZ
galaxies for scales k < 0.3 h Mpc−1. Measurements of the cosmic growth rate from the
WiggleZ Survey and other current and future observations offer a powerful test of the
physical nature of dark energy that is complementary to distance-redshift measures
such as supernovae and baryon acoustic oscillations.
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2 Blake et al.

Recent cosmological observations have revealed significant
gaps in our understanding of the physics of the Universe. A
set of measurements including the anisotropies of the Cos-
mic Microwave Background radiation, the shape of the clus-
tering power spectrum of galaxies, the brightness of distant
supernovae and the projected scales of baryon acoustic os-
cillations have indicated the presence of a “dark energy”
component which is propelling the cosmic expansion into a
phase of acceleration (for recent results see Komatsu et al.
2009, Reid et al. 2009, Percival et al. 2010, Guy et al. 2010).

The physical nature of dark energy is not yet under-
stood. Several explanations have been put forward includ-
ing the presence of smoothly-distributed energy such as a
cosmological constant or a quintessence scalar field, a large-
scale modification to Einstein’s theory of General Relativity,
or the effects of spatially-varying curvature in an inhomo-
geneous Universe. Further observational data is required to
distinguish clearly between the subtly-varying predictions of
these very different physical models (e.g., Linder 2005, Wang
2008, Wiltshire 2009).

One of the most important observational datasets for
addressing this issue is the large-scale structure of the galaxy
distribution. The clustering within this distribution arises
through a process of gravitational instability which acts to
amplify primordial matter fluctuations. The growth rate of
this structure with time is a key discriminant between cos-
mological models (e.g., Linder & Jenkins 2003, Linder &
Cahn 2007, Nesseris & Perivolaropoulos 2008). Two different
physical dark energy scenarios with the same background
cosmic expansion generally produce different growth rates
of perturbations, hence growth measurements are able to
discriminate between models that are degenerate under ge-
ometric tests (Davis et al. 2007, Rubin et al. 2009).

The growth of cosmic structure is driven by the motion
of matter, for which galaxies act as “tracer particles”. These
flows imprint a clear observational signature in galaxy sur-
veys, known as redshift-space distortions, because the galaxy
redshift is generated by not only the background cosmic ex-
pansion but also the peculiar velocity tracing the bulk flow of
matter (Kaiser 1987, Hamilton 1998). As a consequence the
2-point statistics of the galaxy distribution are anisotropic
on large scales, where the amplitude of the anisotropy is re-
lated to the velocity of the bulk flow and hence to the growth
rate of structure.

Many previous galaxy surveys have measured this
anisotropy employing either the galaxy correlation function
or power spectrum. In the relatively local Universe, exquisite
studies at redshift z ≈ 0.1 have been undertaken using data
from the 2-degree Field Galaxy Redshift Survey (2dFGRS;
Peacock et al. 2001, Hawkins et al. 2003, Percival et al.
2004) and the Sloan Digital Sky Survey (SDSS; Tegmark et
al. 2004). The SDSS Luminous Red Galaxy (LRG) sample
enabled these measurements to be extended to somewhat
higher redshifts z ≈ 0.35 (Tegmark et al. 2006, Cabre &
Gaztanaga 2009, Okumura et al. 2008). Noisier results have
been achieved at greater look-back times up to z ≈ 1 by
surveys mapping significantly smaller cosmic volumes such
as the 2dF-SDSS LRG and Quasar survey (2SLAQ; da An-
gela et al. 2008) and the VIMOS-VLT Deep Survey (VVDS;
Guzzo et al. 2008).

The current observational challenge is to map the
intermediate-redshift 0.3 < z < 1 Universe with surveys

of comparable statistical power to 2dFGRS and SDSS, so
that accurate growth rate measurements can be extracted
across the full (hypothesized) redshift range for which dark
energy dominates the cosmic dynamics. In order to achieve
this goal we have constructed the WiggleZ Dark Energy Sur-
vey (Drinkwater et al. 2010), a new large-scale spectroscopic
galaxy redshift survey, using the multi-object AAOmega fi-
bre spectrograph at the 3.9m Australian Astronomical Tele-
scope. The survey, which began in August 2006, targets UV-
selected star-forming emission-line galaxies in several differ-
ent regions around the sky and at redshifts z < 1. By cov-
ering a total solid angle of 1000 deg2 the WiggleZ Survey
maps two orders of magnitude more cosmic volume in the
z > 0.5 Universe than previous galaxy redshift surveys. This
paper presents the current measurements of the growth rate
of structure using the galaxy power spectrum of the survey.
The dataset will also permit many other tests of the cosmo-
logical model via baryon acoustic oscillations, the Alcock-
Pacyznski effect, higher-order clustering statistics and topo-
logical descriptors of the density field.

The improving statistical accuracy with which redshift-
space distortions may be measured by observational datasets
requires that the theoretical modelling of the data also ad-
vances. Recent reviews of this topic have been provided by
Percival & White (2009) and Song & Percival (2009). In the
linear clustering regime, in the large-scale limit, the theory
is well-understood (Kaiser 1987, Hamilton 1998). However,
both simulations and observations have demonstrated that
linear theory is a poor approximation across a wide range
of quasi-linear scales encoding a great deal of clustering in-
formation (e.g. Jennings et al. 2011, Okumura et al. 2011).
The blind application of linear-theory modelling to current
surveys would therefore result in a significant systematic
error in the extraction of the growth rate and a potential
mis-diagnosis of the physical nature of dark energy.

Various methodologies have been employed for extend-
ing the modelling of redshift-space distortions to quasi-linear
and non-linear scales. The classical approach – the so-called
“streaming model” (e.g. Hatton & Cole 1998) – modu-
lates the linear theory clustering with an empirical damp-
ing function characterized by a variable parameter, which
is marginalized over when extracting the growth rate. This
model has provided an acceptable statistical fit to many pre-
vious datasets, but the lack of a strong physical motivation
for the empirical function could lead to systematic errors
when the model is confronted by high-precision data.

In this paper we consider two alternatives. Firstly,
quasi-linear redshift-space distortions can be modelled by
various physically-motivated perturbation theory schemes
(for recent reviews see Nishimichi et al. 2009; Carlson, White
& Padmanabhan 2010). Given that the accuracy of some
current perturbation techniques breaks down at a particular
quasi-linear scale, leading to potentially large discrepancies
at smaller scales, the range of validity of these models must
be carefully considered. The second approach is to use nu-
merical N-body simulations to produce fitting formulae for
the density and velocity power spectra (Smith et al. 2003,
Jennings et al. 2011), which enables models to be estab-
lished across a wider range of scales. The main concern of
this approach is that these fitting formulae may only be valid
for the subset of cosmologies and galaxy formation models
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in which they were derived (an important point given the
unknown nature of dark energy).

A further significant issue in the modelling of redshift-
space distortions in the galaxy distribution is the “galaxy
bias” relation by which galaxies trace the matter overdensi-
ties that drive the velocities (e.g., Cole & Kaiser 1989). The
typical assumption of a local, linear, deterministic bias, for
which there is a good physical motivation on large scales
(Scherrer & Weinberg 1998), may break down in the case
of precise measurements of the clustering pattern on quasi-
linear scales (Swanson et al. 2008), also potentially leading
to systematic errors in growth rate fits. In this study we
consider the introduction of stochasticity to the bias rela-
tion by varying the galaxy-mass cross-correlation (Dekel &
Lahav 1999). We note that further studies of the WiggleZ
dataset involving the bispectrum, 3-point correlation func-
tion, galaxy halo occupation distribution and comparison
with numerical simulations will yield further constraints on
the form of galaxy bias.

The aim of this paper is to use the existing range of
redshift-space distortion models and galaxy power spectra
from the WiggleZ survey to derive measurements of the
growth rate across the redshift range z < 1 that are ro-
bust against modelling systematics. We assume through-
out a cosmological model consistent with the analysis of
the latest measurements of the CMB by the Wilkinson Mi-
crowave Anisotropy Probe (Komatsu et al. 2009): a flat Uni-
verse described by General Relativity with matter density
Ωm = 0.27, cosmological constant ΩΛ = 0.73, baryon frac-
tion Ωb/Ωm = 0.166, Hubble parameter h = 0.72, primor-
dial scalar index of fluctuations ns = 0.96 and total fluctu-
ation amplitude σ8 = 0.8. In addition to providing a good
description of the temperature and polarization fluctuations
in the CMB, this model yields a good fit to distance mea-
surements from supernovae and baryon acoustic oscillations
(Guy et al. 2010, Percival et al. 2010). In this paper we test
if the same model also predicts the observed growth rate
of structure. Future studies will explore simultaneous fits to
these datasets using different dark energy models.

The layout of this paper is as follows: in Section 2
we present the measurements of the various observational
statistics quantifying the anisotropic power spectrum. Sec-
tion 3 summarizes the current theory of redshift-space dis-
tortions in Fourier space and introduces in more detail the
models we will fit to the data. In Section 4 we carry out
the parameter fitting focussing on the growth rate and the
galaxy-mass cross-correlation. Section 5 presents an analysis
of the moments of the power spectrum and extraction of the
power spectrum of the velocity divergence field, and Section
6 lists our conclusions.

2 MEASUREMENTS

2.1 Sample

The WiggleZ Dark Energy Survey at the Australian Astro-
nomical Telescope (Drinkwater et al. 2010) is a large-scale
galaxy redshift survey of bright emission-line galaxies map-
ping a cosmic volume of order 1 Gpc3 over redshift z < 1.
The survey, which began in August 2006 and is scheduled
to finish in January 2011, will obtain of order 200,000 red-
shifts for UV-selected galaxies covering of order 1000 deg2

of equatorial sky, using the AAOmega spectrograph (Sharp
et al. 2006). The survey design is driven by the scientific
goal of measuring baryon acoustic oscillations in the galaxy
power spectrum at a significantly higher redshift than exist-
ing surveys. The target galaxy population is selected from
UV imaging by the Galaxy Evolution Explorer (GALEX)
satellite, matched with optical data from the Sloan Digi-
tal Sky Survey (SDSS) and Red Cluster Sequence survey
(RCS2; Gilbank et al. 2011) to provide an accurate position
for fibre spectroscopy. Full details about the survey design,
execution and modelling are provided by Blake et al. (2009),
Drinkwater et al. (2010) and Blake et al. (2010).

In this paper we analyze a subset of the WiggleZ sample
assembled up to the end of the 10A semester (May 2010).
We include data from six survey regions – the 9-hr, 11-hr,
15-hr, 22-hr, 1-hr and 3-hr regions – in the redshift range
0.1 < z < 0.9, which together constitute a total sample
of N = 152,117 galaxies. Figure 1 displays the distribution
in right ascension and declination of the analyzed sample
for the six survey regions, where the greyscale level corre-
sponds to the relative redshift completeness. We divided the
sample into four redshift slices of width ∆z = 0.2 in or-
der to map the evolution of the growth rate with redshift.
The effective redshifts at which the clustering pattern was
measured in each of these slices (evaluated using equation
44 of Blake et al. 2010) were zeff = (0.22, 0.41, 0.60, 0.78).
The numbers of galaxies analyzed in each redshift slice were
N = (19608, 39495, 60227, 32787).

2.2 Power spectrum estimation

We estimated the two-dimensional galaxy power spectrum
Pg(k, µ) in four redshift slices for each of the six WiggleZ
survey regions using the direct Fourier methods introduced
by Feldman, Kaiser & Peacock (1994; FKP). Our method-
ology is fully described in Section 3.1 of Blake et al. (2010);
we give a brief summary here. Firstly we mapped the angle-
redshift survey cone into a cuboid of co-moving co-ordinates
using a fiducial flat ΛCDM cosmological model with matter
density Ωm = 0.27. We gridded the catalogue in cells using
nearest grid point assignment ensuring that the Nyquist fre-
quencies in each direction were much higher than the Fourier
wavenumbers of interest (we corrected the power spectrum
measurement for the small bias introduced by this gridding
using the method of Jing 2005). We then applied a Fast
Fourier Transform to the grid. The window function of each
region was determined using the methods described by Blake
et al. (2010) that model effects due to the survey boundaries,
incompleteness in the parent UV and optical catalogues, in-
completeness in the spectroscopic follow-up, systematic vari-
ations in the spectroscopic redshift completeness across the
AAOmega spectrograph, and variations of the galaxy red-
shift distribution with angular position. The Fast Fourier
Transform of the window function was then used to con-
struct the final power spectrum estimator. The measurement
was corrected for the small effect of redshift blunders using
Monte Carlo survey simulations as described in Section 3.2
of Blake et al. (2010).

Since each WiggleZ survey region subtends a relatively
small angle on the sky, of order 10 degrees, the flat-sky ap-
proximation is valid. We orient the x-axis of our Fourier
cuboid parallel to the line-of-sight at the angular centre
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4 Blake et al.

Figure 1. Greyscale map illustrating the relative redshift completeness of each of the six WiggleZ survey regions analyzed in this paper.
This Figure is generated by taking the ratio of the galaxy densities in the redshift and parent catalogues in small cells. The x-axis and
y-axis of each panel represent right ascension and declination, respectively.

of each region, and then represent each Fourier mode by
wavevectors parallel and perpendicular to the line-of-sight:
k‖ = |kx| and k⊥ =

√

k2
y + k2

z. We can also then deter-
mine the values of the total wavenumber of each mode

k =
√

k2
‖

+ k2
⊥ and the cosine of its angle to the line-of-

sight, µ = k‖/k. We used two binning schemes for averaging

the Fourier modes ~k: in bins of k⊥ and k‖ (of width 0.02 h
Mpc−1) and in bins of k and µ (of width 0.02 h Mpc−1 and
0.1, respectively). We determined the covariance matrix of
the power spectrum measurement in these binning schemes
by implementing the sums in Fourier space described by
FKP (see Blake et al. 2010 equations 20-22). The angular
size of each WiggleZ region implies that the effect of wide-
angle distortions (Raccanelli, Samushia & Percival 2010) is
not significant.

We note that the FKP covariance matrix of the power
spectrum only includes the contribution from the survey
window function and neglects any covariance due to non-
linear growth of structure or redshift-space effects. The full
covariance matrix may be studied with the aid of a large
ensemble of N-body simulations (Rimes & Hamilton 2005,
Takahashi et al. 2011), which we are preparing in conjunc-
tion with the final WiggleZ survey sample. The impact of
using the full non-linear covariance matrix on growth-of-
structure measurements has not yet been studied, although
Takahashi et al. (2011) demonstrated that the effect on the
accuracy of extraction of the baryon acoustic oscillations is
very small.

The power spectrum model must be convolved with the
window function to be compared to the data. For reasons

of computing speed we re-cast the convolution as a matrix
multiplication

Pconvolved(i) =
∑

j

Mij Pmodel(j) , (1)

where i and j label a single bin in the two-dimensional set
(k⊥, k‖) or (k, µ). We determined the convolution matrix
Mij by evaluating the full Fourier convolution for a com-
plete set of unit vectors. For example, to evaluate the jth

row of matrix elements, corresponding to a bin (kmin,j <
k < kmax,j , µmin,j < µ < µmax,j), we defined the three-
dimensional model in Fourier space for the unit vector

Pmodel(~k) = 1 (kmin,j < k < kmax,j ; µmin,j < µ < µmax,j),

= 0 otherwise , (2)

applied the full convolution transform (equation 16 in Blake
et al. 2010), and binned the resulting power spectrum ampli-
tudes in the same (k, µ) bins. The vector of results defines
the jth row of the matrix M in Equation 1. In summary,
for each of the 24 sub-regions we obtain a data vector P s

g

[spanning (k⊥, k‖) or (k, µ)], a covariance matrix and a con-
volution matrix.

Figures 2 and 3 respectively display two-dimensional
power spectra P (k⊥, k‖) and P (k, µ) for each of the four
redshift slices, obtained by stacking measurements across the
six survey regions. For comparison we also plot in each case
contours corresponding to the best-fitting non-linear empiri-
cal Lorentzian redshift-space distortion model described be-
low. In Figure 2 the non-circular nature of the measurements
and models in Fourier space encode the imprint of redshift-
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space distortions. The overall “squeezing” of the contours
in the k⊥ direction reflects the large-scale bulk flows. The
apparent “pinching” of the models near the k‖ = 0 axis is
due to the damping caused by the pairwise velocity disper-
sion discussed below in Section 3.2, the amplitude of which
is seen to increase with decreasing redshift (the pinching re-
sults from the relative variation with µ of the numerator
and denominator of Equation 10). Figure 3, which bins the
clustering amplitude with the cosine of the angle to the line-
of-sight µ, illustrates how the coherent velocity flows boost
the power of radial (µ = 1) modes relative to tangential
(µ = 0) modes for a given scale k.

3 MODELLING THE REDSHIFT-SPACE

GALAXY POWER SPECTRUM

In this Section we describe a range of 18 models of the
redshift-space galaxy power spectrum in the quasi-linear
regime that we will try fitting to our measurements. These
models are listed in Table 1. We assume that the shape of
the underlying linear matter power spectrum is accurately
determined by observations of the Cosmic Microwave Back-
ground radiation, and hence we fix the background cosmo-
logical parameters. In this case each redshift-space power
spectrum model contains at least two parameters to be fit-
ted: the growth rate f and a linear bias b. In several cases
discussed below we introduce a third parameter, a variable
damping coefficient σv. The multipole power spectra of these
models at redshift z = 0.6 are compared in Figure 4 assum-
ing a linear bias b = 1, a growth rate f = 0.7 and (where
applicable) a damping term σv = 300 h km s−1. For the pur-
poses of illustration, all models in Figure 4 are divided by
a smooth “no-wiggles” reference power spectrum from the
fitting formulae of Eisenstein & Hu (1998), which has the
same shape as the linear power spectrum but without the
imprint of baryon acoustic oscillations.

3.1 Density and velocity power spectra

The galaxy overdensity field, δg, is modified in redshift-space
by peculiar velocities. In Fourier space the redshift-space
overdensity field is given by

δs
g(k, µ) = δg(k) − µ2θ(k) , (3)

where θ(k) is the Fourier transform of the divergence of the
peculiar velocity field ~u in units of the co-moving Hubble
velocity (i.e. ~u = ~v/[H(a)a]), θ = ~∇.~u, and µ is the cosine of
the angle of the Fourier mode to the line-of-sight. Equation
3 assumes that the galaxy separation is small compared with
the distance to the galaxies, δg and θ are small, the velocity
field ~u is irrotational, and the continuity equation holds.
In this case the linear redshift-space power spectrum of a
population of galaxies may be written

P s
g (k, µ) = Pgg(k) − 2µ2Pgθ(k) + µ4Pθθ(k) , (4)

where Pgg(k) ≡ 〈|δg(~k)|2〉, Pgθ(k) ≡ 〈δg(~k)θ∗(~k)〉, Pθθ(k) ≡

〈|θ(~k)|2〉 are the isotropic galaxy-galaxy, galaxy-θ and θ-θ

power spectra for modes ~k, respectively. We will often refer
to the Pθθ(k) as the “velocity power spectrum” although it
would be better described as the “power spectrum of the
velocity divergence field”.

Assuming that the velocity field is generated under lin-
ear perturbation theory then

θ(k) = −f δ(k) , (5)

where f is the growth rate of structure, expressible in
terms of the growth factor D(a) at cosmic scale factor a
as f ≡ d ln D/d ln a, and δ is the matter overdensity. The
growth factor is defined in terms of the amplitude of a sin-
gle perturbation as δ(a) = D(a) δ(1). Equation 5 addition-
ally assumes that the linearized Euler and Poisson equations
hold in a perturbed Friedmann-Robertson-Walker universe.
It represents a coherent flow of matter in which there is a
one-to-one coupling between the Fourier components of the
velocity divergence and density fields.

Under the assumption of a deterministic, scale-
independent, local, linear bias b then

δg = b δ , (6)

and we may write Pgg = b2Pδδ and Pgθ = bPδθ. If we ad-
ditionally assume that Equation 5 applies, then Equation 4
may be written

P s
g (k, µ) = b2 Pδδ(k)

(

1 +
fµ2

b

)2

= b2 Pδδ(k) (1 + βµ2)2 . (7)

Equation 7 is known as the large-scale “Kaiser limit” of the
redshift-space power spectrum model (Kaiser 1987), often
expressed in terms of the parameter β = f/b. We assume
no velocity bias between galaxies and matter (Lau, Nagai &
Kravtsov 2010).

Simulations and observations have demonstrated that
Equation 7 is an unreliable model on all but the largest
scales (smallest values of k) due to the non-linear growth
of structure. Deviations from the Kaiser limit are evident
for k > 0.02 h Mpc−1 and are particularly noticeable in
the θ power spectra (Jennings et al. 2011; Okumura et al.
2011). This failure of the model is due to the breakdown
of the relation between θ and δ (Equation 5) rather than
the underlying structure of Equation 4 (Scoccimarro 2004).
Non-linear evolution implies that a given overdensity δ pro-
duces a range of values of θ, and this range of velocities acts
to smooth the galaxy overdensity field in redshift-space, or
damp the θ power spectra. This non-linear damping must
be modelled in order to avoid introducing a systematic er-
ror into our extraction of the growth rate f from data. A
variety of methods are available for implementing this non-
linear correction, which we discuss below.

3.2 The empirical non-linear velocity model

The standard “streaming model” for describing the non-
linear component of redshift-space distortions (e.g. Hatton
& Cole 1998) introduces an empirical damping function F
to be multiplied into Equation 4, representing convolution
with uncorrelated galaxy motions on small scales:

P s
g (k, µ) =

[

Pgg(k) − 2µ2Pgθ(k) + µ4Pθθ(k)
]

F (k, µ) . (8)

The two models most commonly considered in the literature
are the Lorentzian F = [1 + (kσvµ)2]−1 and the Gaussian
F = exp [−(kσvµ)2], representing exponential and Gaussian
convolutions in configuration space, and each parameterized
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6 Blake et al.

Figure 2. The galaxy power spectrum amplitude as a function of wavevectors (k⊥, k‖) perpendicular and parallel to the line-of-sight,

determined by stacking observations in different WiggleZ survey regions in four redshift slices. The contours correspond to the best-
fitting non-linear empirical Lorentzian redshift-space distortion model. We note that because of the differing degrees of convolution in
each region due to the window function, a “de-convolution” method was used to produce this plot. Before stacking, the data points were
corrected by the ratio of the unconvolved and convolved two-dimensional power spectra corresponding to the best-fitting model, for the
purposes of this visualization. Only the top-right quadrant of data for each redshift is independent; the other three quadrants are mirrors
of this first quadrant. The k⊥ = 0 axis is noisiest because it contains the lowest number of Fourier modes available for power spectrum
determination.

Figure 3. The galaxy power spectrum as a function of amplitude and angle of Fourier wavevector (k, µ), determined by stacking
observations in different WiggleZ survey regions in four redshift slices. The contours correspond to the best-fitting non-linear empirical
Lorentzian redshift-space distortion model. A similar stacking method was used to that employed in the generation of Figure 2. In the
absence of redshift-space distortions, the model contours would be horizontal lines.

c© 0000 RAS, MNRAS 000, 000–000



WiggleZ Survey: growth of structure 7

Table 1. Description of the quasi-linear redshift-space power spectrum models fitted to the WiggleZ survey measurements to determine
the growth rate f . The “Damping” for each model can be “Variable” (empirically fit to the data), “Linear” (determined using Equation
12 as motivated by Scoccimarro 2004) or “None” (not included in the model). In each model we also fit for a linear bias parameter b.

Model Damping Fitted parameters Reference

1. Empirical Lorentzian with linear Pδδ(k) Variable f , b, σv e.g. Hatton & Cole (1998)
2. Empirical Lorentzian with non-linear Pδδ(k) Variable f , b, σv

3. Pδδ, Pδθ, Pθθ from 1-loop SPT None f , b e.g. Vishniac (1983), Juszkiewicz et al. (1984)
4. Pδδ, Pδθ, Pθθ from 1-loop SPT Variable f , b, σv

5. Pδδ, Pδθ, Pθθ from 1-loop SPT Linear f , b
6. Pδδ, Pδθ, Pθθ from 1-loop RPT None f , b Crocce & Scoccimarro (2006)
7. Pδδ, Pδθ, Pθθ from 1-loop RPT Linear f , b
8. Pδδ, Pδθ, Pθθ from 2-loop RPT None f , b
9. Pδδ, Pδθ, Pθθ from 2-loop RPT Variable f , b
10. Pδδ, Pδθ, Pθθ from 2-loop RPT Linear f , b
11. P (k, µ) from 1-loop SPT None f , b Matsubara (2008)
12. P (k, µ) from 1-loop SPT Linear f , b
13. P (k, µ) with additional corrections None f , b Taruya et al. (2010)
14. P (k, µ) with additional corrections Variable f , b, σv

15. P (k, µ) with additional corrections Linear f , b
16. Fitting formulae from N-body simulations None f , b Smith et al. (2003), Jennings et al. (2011)
17. Fitting formulae from N-body simulations Variable f , b, σv

18. Fitting formulae from N-body simulations Linear f , b

Figure 4. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for the different models listed in Table 1. The models are evaluated at
redshift z = 0.6 assuming a linear bias b = 1, a growth rate f = 0.7 and (where applicable) a damping term σv = 300 h km s−1. The
models are labelled by their row number in Table 1. The solid and dashed lines are models that respectively include and exclude the
damping term. All models are divided by a smooth “no-wiggles” reference power spectrum from the fitting formulae of Eisenstein &

Hu (1998), which has the same shape as the linear power spectrum but without the imprint of baryon acoustic oscillations. The models
agree well in the large-scale limit, but significant differences develop between the models at smaller scales.
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by a single variable σv. The Lorentzian model produces bet-
ter fits to data (e.g. Hawkins et al. 2003, Cabre & Gaztanaga
2009) and we assume this version of the model in our study.

Equation 8 is typically applied assuming that Pgg, Pgθ

and Pθθ are predicted by linear theory assuming Equation
5, hence for the Lorentzian model we obtain

P s
g (k, µ) = b2 Pδδ,lin(k)

(1 + fµ2/b)2

1 + (kσvµ)2
, (9)

where we generated the linear power spectrum Pδδ,lin(k)
using the CAMB software package (Lewis, Challinor &
Lasenby 2000). This is Model 1 in Table 1. We also con-
sidered the case where a non-linear density power spec-
trum Pδδ,NL(k), generated by applying the fitting formula of
Smith et al. (2003) to the CAMB output, is used in Equation
9:

P s
g (k, µ) = b2 Pδδ,NL(k)

(1 + fµ2/b)2

1 + (kσvµ)2
. (10)

This is Model 2.
Although these models are motivated by virialized mo-

tions of particles in collapsed structures, it is important to
note that they are heuristic in nature. The correction repre-
sented by F (k) in fits to real data is typically of order 20%
at k ∼ 0.2 h Mpc−1. These Fourier modes describe physical
scales of tens of h−1 Mpc, far exceeding the size of virialized
structures. In addition, the form of F and the value of σv

depend strongly on details such as galaxy type, dark mat-
ter halo mass and satellite fraction. However, it should be
noted that Equation 9 does a very reasonable job of empir-
ically modelling real datasets at the precision available in
previous redshift surveys (e.g., Hawkins et al. 2003, Cabre
& Gaztanaga 2009).

3.3 Perturbation theory approaches

A different approach to modelling clustering beyond lin-
ear scales is to extend Equations 4 and 5 into the quasi-
linear regime using perturbation theory techniques. These
approaches have the advantage of a stronger physical mo-
tivation compared to the empirical streaming models, and
the disadvantage that they are potentially applicable for a
narrower range of scales, depending on the type of pertur-
bation expansion. Standard perturbation theory at z = 0
is only accurate for the range k < 0.1 h Mpc−1, but other
expansion approaches are available with the precise range of
validity dependent on the model in question and the accu-
racy required (Nishimichi et al. 2009, Carlson et al. 2009).
We describe the order of the perturbative expansion by the
number of “loops” of resummation performed; calculations
including up to 2 loops are currently tractable.

Various methodologies have been introduced. The sim-
plest technique is to use perturbation theory approaches to
model the quasi-linear behaviour of the functions Pδδ(k),
Pδθ(k) and Pθθ(k) in Equation 4. These techniques have
been recently reviewed by Nishimichi et al. (2009) and Carl-
son et al. (2009) and include Eulerian standard perturba-
tion theory (SPT; e.g. Vishniac 1983, Juszkiewicz, Sonoda &
Barrow 1984) together with attempts to improve the conver-
gence behaviour such as Renormalized Perturbation Theory
(RPT; e.g. Crocce & Scoccimarro 2006) which does not ex-
pand on the amplitude of fluctuations. When generating the

perturbation theory predictions we assumed an input linear
power spectrum consistent with the latest CMB observa-
tions: Ωm = 0.27, ΩΛ = 0.73, Ωb/Ωm = 0.166, h = 0.72,
ns = 0.96 and σ8 = 0.8.†

Going beyond the linear assumption may also lead to an
alternative dependence of the redshift-space power spectrum
on µ to that exhibited by Equation 4. Scoccimarro (2004)
proposed the following model for the redshift-space power
spectrum in terms of the quasi-linear density and velocity
power spectra:

P s
g (k, µ) =

[

Pgg(k) − 2µ2Pgθ(k) + µ4Pθθ(k)
]

e−(kµσv)2 ,(11)

where σv is determined by

σ2
v =

1

6π2

∫

Pθθ(k) dk . (12)

The power spectra Pgg(k), Pgθ(k) and Pθθ(k) in Equation
11 may be generated by perturbation theory or other ap-
proaches. We note that Pgθ(k) and Pθθ(k) are functions of
f . The damping factor in Equation 11 is analogous to the
streaming model of Equation 8 but has a very different phys-
ical motivation: it aims to model the quasi-linear growth of
the power spectra rather than virialized small-scale motions.
Indeed, it would be possible to add an extra empirical damp-
ing factor F to Equation 11 to model small-scale motions.

As discussed by Scoccimarro (2004), the model of Equa-
tion 11 is an approximation in which the Gaussian damp-
ing factor attempts to reproduce the correct non-linear be-
haviour; Equation 11 cannot be strictly derived from theory.
Given this approximation we consider fitting σv as a variable
parameter in addition to fixing it using Equation 12. Models
3 to 10 in Table 1 are various combinations of SPT and RPT
with different implementations of the damping term.

We note that σv can also be expressed in velocity units
by multiplying by the Hubble parameter H0 = 100 h km
s−1 Mpc−1. When calculating the damping term we use the
linear velocity power spectrum as the input to Equation 12;
i.e. we set Pθθ(k) = f2Pδδ,lin(k).

The final perturbation theory approaches we consider
follow Matsubara (2008) and Taruya, Nishimichi & Saito
(2010) who present quasi-linear perturbation theory models
including terms up to µ6, of the form

P s
g (k, µ) =

3
∑

n=0

An(k) µ2n , (13)

where the coefficients An(k) are functions of f , which we
also try fitting to our data. The Matsubara (2008) results are
a full angle-dependent treatment of standard perturbation
theory (Models 11 and 12), and Taruya et al. (2010) present
an improved analysis incorporating additional correction
terms (Models 13 to 15). When calculating the Taruya et
al. model prediction we use power-spectra Pδδ(k), Pδθ(k)
and Pθθ(k) generated by 2-loop Renormalized Perturbation
Theory.

† We are very grateful to Martin Crocce for providing us with
the 1-loop and 2-loop outputs of RPT for our cosmological model
at the redshifts in question.
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3.4 Fitting formulae calibrated by simulations

Finally, N-body dark matter simulations can be exploited
to calibrate the quasi-linear forms of the functions Pδδ(k),
Pδθ(k) and Pθθ(k). The advantage of this technique is that
the results will be (potentially) reliable across a wider range
of scales than is accessible with perturbation theory. The
disadvantage is that simulations are expensive to generate
and it is difficult to span a wide range of input cosmological
models (although that is not a limitation for us given that
we are only considering a single fiducial model).

Smith et al. (2003) presented a widely-used prescription
for generating non-linear density power spectra Pδδ. Fitting
formulae calibrated to N-body simulations for Pδθ and Pθθ as
a function of redshift, in terms of Pδδ, were recently proposed
by Jennings et al. (2011). We inserted these fitting functions
into Equation 11, scaling by f and f2 respectively to cor-
rect for the differing notation conventions. The Jennings et
al. formulae, combined with various implementations of the
damping term, are Models 16 to 18 in Table 1.

4 PARAMETER FITS

4.1 Growth rate

We fitted the 18 models introduced in Section 3 and sum-
marized in Table 1 to the WiggleZ Survey galaxy power
spectra Pg(k⊥, k‖) measured in Section 2. For each of the
four redshift slices we determined the growth rate f fitting
to the six survey regions, marginalizing over the linear bias
b (and the pairwise velocity dispersion σv where applica-
ble). We also recorded the minimum value of the χ2 statis-
tic for each model calculated using the full covariance ma-
trix. We repeated this procedure varying the range of scales

0 <
√

k2
⊥ + k2

‖
< kmax over which each model is fitted. Uti-

lizing a higher value of kmax produces an improved statisti-
cal error in the measurement, but potentially causes a larger
systematic error since all models (and particularly some of
the perturbation-theory models) are less reliable at larger
values of k for which the non-linear corrections are more sig-
nificant. In the absence of systematic errors the best-fitting
growth rate would be independent of kmax.

Figure 5 displays the growth-rate measurements for the
0.5 < z < 0.7 redshift slice (which produces the highest
statistical accuracy of the four slices), comparing results for
kmax = 0.1, 0.2 and 0.3h Mpc−1. At least one model can
always be found that provides a good fit to the data for each
of the choices of kmax, as indicated by the minimum values
of χ2 = (93.8, 436.5, 999.1) for kmax = (0.1, 0.2, 0.3) with
number of degrees of freedom (87, 411, 981). The respective
probabilties for obtaining values of χ2 higher than these are
(0.29, 0.19, 0.34), indicating an acceptable goodness-of-fit. In
Figure 5 we display the minimum values of χ2 for every
model relative to the best-fitting model for each choice of
kmax.

For kmax = 0.1 all models provide a good fit to the data
and consistent measurements of the growth rate. This con-
firms the convergence of the different modelling approaches
at large scales. For kmax = 0.2 and 0.3 some models are
significantly disfavoured by larger values of χ2, and these
models produce measurements of the growth rate which

systematically differ from the best-performing models. For
kmax = 0.3, models with a variable damping parameter pro-
duce a fit with a significantly lower value of χ2, suggesting
that Equation 12 produces an unreliable prediction of the
damping coefficient for these smaller scales.

Considering all four redshift slices, the best-performing
models for kmax = 0.3 h Mpc−1 are the Taruya et al.
(2010) model, incorporating extra angle-dependent correc-
tion terms in addition to the density and velocity power
spectra from 2-loop Renormalized Perturbation Theory
(Model 14 in Table 1), and the Jennings et al. (2011) fitting
formula calibrated from N-body simulations (Model 17). The
growth rates deduced from these two very different mod-
elling techniques agree remarkably well, after marginalizing
over the variable damping term and linear galaxy bias, with
the difference in values being much smaller than the sta-
tistical errors in the measurement. The level of this agree-
ment gives us confidence that our results are not limited
by systematic errors. We note that the empirical Lorentzian
streaming model, where we use the non-linear model power
spectrum, also performs well (Model 2 in Table 1). In Fig-
ure 5 we have highlighted these three models in red. For all
scales and redshifts these models typically produce mutually
consistent measurements of the growth rate and minimum
values of χ2 which differ by ∆χ2 ∼ 1. As a further compari-
son, Figure 6 illustrates the measurements for all 18 models
in every redshift slice for kmax = 0.2, again highlighting the
same three optimal models in red.

We can use the dispersion in the results of fitting these
three models to estimate the systematic error in the growth
rate measurement, by taking the variance of the different
growth rates weighting by exp (−χ2/2). The systematic er-
ror in f calculated in this manner is (0.01, 0.04, 0.03, 0.04)
in the four redshift slices (for kmax = 0.3 h Mpc−1). The
magnitude of this error is less than half that of the statis-
tical error in each bin. This systematic error represents the
dispersion of growth rate determinations within the set of
redshift-space distortion models listed in Table 1.

We quote our final results using the Jennings et al.
(2011) model, which usually produces the lowest value of χ2,
applied to kmax = 0.3 h Mpc−1. The growth rate measure-
ments in the four redshift slices using this model, marginal-
izing over the other parameters, are f = (0.60± 0.10, 0.70±
0.07, 0.73 ± 0.07, 0.70 ± 0.08). The values of the galaxy bias
parameter in each redshift slice using this model, marginal-
izing over the other parameters, are b2 = (0.69±0.04, 0.83±
0.04, 1.21 ± 0.04, 1.48 ± 0.08).

Figure 7 explores in more detail the robustness of the
growth rate measurements as a function of kmax for the three
optimal models. We plot the growth rate determined in four
redshift slices for these models alone, considering a range of
fitting limits between kmax = 0.15 and 0.3 h Mpc−1. Figure
7 empirically demonstrates that systematic trends in the
growth rate measurement as kmax changes are typically less
than the statistical error in the measurement for kmax = 0.3.

Figure 8 displays the WiggleZ Survey measurements of
the growth rate of structure in four redshift slices, using
the Jennings et al. (2011) model with a variable damping
parameter and fitting to kmax = 0.3 h Mpc−1. We present
our results multiplied by a redshift-dependent normaliza-
tion, f(z)σ8(z), where σ8(z) is the r.m.s. fluctuation at red-
shift z of the linear matter density field in co-moving 8 h−1
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Figure 5. Measurements of the growth rate f for the 0.5 < z < 0.7 redshift slice for each of the 18 models listed in Table 1. The three
panels, each consisting of a pair of plots, correspond to different ranges of fitted scales 0 < k < kmax where kmax = 0.1, 0.2 and 0.3 h
Mpc−1. For each panel the left-hand plot shows the measurement of f and the right-hand plot displays the minimum value of the χ2

statistic relative to the best-fitting model for that choice of kmax. In the left-hand plot, the vertical dashed line indicates the prediction
of a flat ΛCDM cosmological model with Ωm = 0.27. The two vertical dotted lines span the 68% confidence region of the growth rate
measured for the Jennings et al. model with a variable damping parameter, facilitating an easy comparison of the results for different
models. In the right-hand plot, points with ∆χ2 < 0.1 are plotted at the left-hand edge of the panel and ∆χ2 = 1 is indicated by the
vertical dashed line. The three best-performing models for kmax = 0.3 are highlighted by red text.

Mpc spheres, calculated for our fiducial cosmological model.
This weighting increases the model-independence of the re-
sults by removing the sensitivity to the overall normalization
of the power spectrum model (Song & Percival 2009). Be-
cause the overall galaxy power spectrum amplitude scales
with σ8(z) b(z) at a particular redshift z, where b(z) is the
linear bias factor, and the magnitude of the redshift-space
distortion due to coherent flows depends on f(z)/b(z), then
the measured value of growth rate f(z) scales as 1/σ8(z).
The weighted fits in the four redshift slices are f(z) σ8(z) =
(0.42±0.07, 0.45±0.04, 0.43±0.04, 0.38±0.04). The WiggleZ
measurements are compared to results previously published
for the 2dFGRS, SDSS-LRG and VVDS samples, as col-
lected by Song & Percival (2009), and to the prediction of
a flat ΛCDM cosmological model with Ωm = 0.27. We note
that:

• The WiggleZ Survey dataset is the first to produce pre-
cise growth-rate measurements in the intermediate-redshift
range z > 0.4, the apparent transition epoch from decelerat-
ing to accelerating expansion, with 10% measurement errors
that are comparable to those obtained at lower redshift from
existing surveys.

• The low-redshift z < 0.4 WiggleZ measurements agree
well with existing data.

• Our dataset permits coherent flows to be quantified
across the entire redshift range z < 1 using observations
from a single galaxy survey.

• A cosmological model in which General Relativity de-

scribes the large-scale gravitation of the Universe, and the
current matter density parameter is Ωm = 0.27, provides a
good simultaneous description of the initial conditions de-
scribed by CMB observations, the cosmic expansion history
mapped by high-redshift supernovae and baryon acoustic
oscillations, and the growth history mapped by galaxy bulk
flows in the WiggleZ Dark Energy Survey.

4.2 Galaxy-mass cross-correlation

In order to characterize the galaxy bias relation in more de-
tail we introduced a cross-correlation parameter r between
the galaxy and matter overdensities such that 〈δgδ〉 = br〈δ2〉
and 〈δ2

g〉 = b2〈δ2〉 (where |r| ≤ 1 is required by the def-
inition of a cross-correlation coefficient). The value r = 1
corresponds to a fully deterministic bias, whereas r ≤ 1 in-
troduces a random stochastic element to the bias relation.
Measurements of this stochasticity in the SDSS were pre-
sented by Swanson et al. (2008), who utilized a counts-in-
cells analysis to quantify its dependence on scale, luminosity
and colour. Swanson et al. found that a scale-independent
deterministic linear bias was in general a good match to the
SDSS data, especially on large scales, where the amplitude
of the bias varied significantly with luminosity for red galax-
ies but not blue galaxies. Furthermore, colour-dependent
stochastic effects were evident at smaller scales. We can
extend this analysis to higher redshifts using the WiggleZ
power spectrum.
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Figure 6. Measurements of the growth rate f in four redshift slices assuming a fitting limit kmax = 0.2 h Mpc−1 for each of the 18
models listed in Table 1. The vertical dashed line indicates the prediction of a flat ΛCDM cosmological model with Ωm = 0.27. The two
vertical dotted lines span the 68% confidence region of the growth rate measured for the Jennings et al. model with a variable damping
parameter, facilitating an easy comparison of the results for different models. The three best-performing models (based on the values of
the χ2 statistic) are highlighted by red text.

Figure 7. Measurements of the growth rate f in four redshift slices, varying the fitting limit kmax from 0.15 to 0.3 h Mpc−1 in steps
of 0.05, for the three optimal models: the non-linear empirical Lorentzian, Taruya et al. (2010) and Jennings et al. (2011) models. All
models include a variable damping parameter. The vertical dashed line indicates the prediction of a flat ΛCDM cosmological model with
Ωm = 0.27. The two vertical dotted lines span the 68% confidence region of the growth rate measured for the Jennings et al. model for
kmax = 0.3, facilitating an easy comparison of the results for different models.
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Figure 8. Measurements of the growth rate of structure weighted by a redshift-dependent normalization, f(z) σ8(z), obtained in four

redshift slices by fitting WiggleZ Survey data. We assume the Jennings et al. (2011) model for non-linear redshift-space distortions,
with a variable damping parameter, and fit to the scale range k < 0.3 h Mpc−1. The WiggleZ measurements are compared to results
previously published for the 2dFGRS, SDSS-LRG, and VVDS samples (black open circles) as collected by Song & Percival (2009). The
prediction of a flat ΛCDM cosmological model with Ωm = 0.27 is also shown.

Equation 4 may be re-written for a general cross-
correlation parameter r as

Pg(k, µ) = b2Pδδ(k) − 2µ2brPδθ(k) + µ4Pθθ(k) , (14)

and assuming a model for the three power spectra Pδδ(k),
Pδθ(k) and Pθθ(k), the value of r may be extracted for each
scale k by marginalizing over b. In this investigation we fix
the value of the growth rate f at the value predicted by
the ΛCDM model, and we assume the Smith et al. (2003)
and Jennings et al. (2011) prescriptions for the density and
velocity power spectra. We also marginalized over a variable
damping parameter.

Figure 9 displays the measurement of r in independent
Fourier bins of width ∆k = 0.04 h Mpc−1 between k = 0.02
and 0.3h Mpc−1, combining the results for different redshift
slices and varying r within the range −1 ≤ r ≤ 1. We find
that the cross-correlation parameter is consistent with de-
terministic bias r = 1 (and this result also applies for each
separate redshift slice). Because the probability distribution
for r is asymmetric due to the hard upper limit, in the cases
when the confidence region is truncated at r = 1 we plot
in Figure 9 the range below r = 1 enclosing 68% of the
probability, and the position of the peak of the likelihood.

5 ANALYSIS OF THE POWER SPECTRUM

MOMENTS

5.1 Multipole moments of the power spectrum

In this Section we explore some alternative techniques for
quantifying the redshift-space power spectra which can vi-

Figure 9. The galaxy-mass cross-correlation parameter r as a
function of scale k, measured by fitting Equation 14 to the Wig-
gleZ power spectrum data assuming the growth rate predicted by
ΛCDM and marginalizing over linear bias and variable damping
factors. The measurements in different redshift slices are com-
bined.

sualize their information content more neatly. The galaxy
power spectrum P s

g (k, µ) may be decomposed in a basis
of Legendre polynomials Lℓ(µ) to give multipole moments
Pℓ(k):

P s
g (k, µ) =

∑

even ℓ

Pℓ(k)Lℓ(µ) (15)
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Pℓ(k) =
2ℓ + 1

2

∫ 1

−1

dµP s
g (k, µ)Lℓ(µ) . (16)

The monopole (l = 0) spectrum primarily contains informa-
tion about the underlying shape of the isotropic clustering
pattern. The quadrupole (l = 2) spectrum holds the leading-
order signal from the anisotropic modulation in power due
to redshift-space effects. We note that the multipole mo-
ments may be expressed in terms of the density-velocity
power spectra Pδδ, Pδθ and Pθθ (e.g. Percival & White 2009).

The multipole moments may be extracted from the
power spectrum measurement in bins of µ by turning Equa-
tion 16 from an integral into a sum:

Pℓ(k) =
2ℓ + 1

2

∑

µ bins

P s
g (k, µ)

∫ µ+∆µ/2

µ−∆µ/2

Lℓ(µ
′) dµ′ . (17)

Alternatively, Yamamoto et al. (2006) introduced a direct
estimator for Pℓ(k) which does not require binning of the
power spectrum in µ (which is particularly problematic at
low k, where there are limited modes available in Fourier
space). We present the key equations of the estimator here,
referring the reader to Yamamoto et al. (2006) for the full
derivation.

The Yamamoto et al. estimator, which is valid when
the distant-observer approximation is applicable, is written
using sums over Ngal observed galaxies and Nran = Ngal/α
random (mock) galaxies (where α ≪ 1). For each Fourier

mode ~k we define the multipole moments based on the data
as

Dℓ(~k) =

Ngal
∑

i=1

w(~si) exp (i~si.~k) Lℓ(~̂si.~̂k) , (18)

where ~si is the position vector of galaxy i and w(~s) is a
weight factor for each galaxy, specified below. If we define
the equivalent sum Rℓ(~k) over the set of random galaxies,

then an estimator for Pℓ(~k) is

Pℓ(~k) = A−1
[

Dℓ(~k) − αRℓ(~k)
] [

D0(~k) − αR0(~k)
]

− Sℓ(~k) , (19)

where the shot noise term Sℓ(~k) is given by

Sℓ(~k) = A−1(1 + α)α

Nran
∑

i=1

w(~si)
2 Lℓ(~̂si.~̂k) . (20)

The normalization A is given, in terms of sums over the Nc

grid cells ~x constituting the window function, as

A =
∑

~x

W 2(~x)w2(~x) =

Ngal
∑

i=1

W (~si) w2(~si) , (21)

where W (~s) is the window function normalized over its
volume V such that

∫

WdV = Ngal, or
∑

~x
W (~x) =

Ngal(Nc/V ). The minimum variance in Pℓ(~k) is produced
by the usual FKP weight function

w(~s) = [1 + W (~s)P0]
−1 , (22)

where P0 is a characteristic power spectrum amplitude
(which we take as P0 = 5000 h−3 Mpc3, although this choice
has very little effect on our results). The error in the esti-

mator for each Fourier mode ~k is given by

[

∆Pℓ(~k)
]2

= A−1α

Nran
∑

i=1

w(~si)
4W (~si)

×
[

W (~si)P (~k) + 1 + α
]2

[

Lℓ(~̂si.~̂k)
]2

. (23)

We evaluated the estimator for Pℓ(~k) over the usual grid
of Fourier modes which describe fluctuations in a cuboid of
dimensions (Lx, Ly , Lz), i.e. for modes ~k = (kx, ky, kz) =
(2πnx/Lx, 2πny/Ly , 2πnz/Lz) for integers (nx, ny , nz). We

then averaged the amplitudes in spherical shells of ~k to pro-
duce our estimate of Pℓ(k), which we write as P gridded

ℓ (k).
We note that the discreteness of the Fourier modes in the
grid produces a bias in the estimate, which is particularly
evident at low k. We corrected for this bias using a model
power spectrum Pmodel(~k) by evaluating

Pmodel,gridded
ℓ (~k) = A−1α

Nran
∑

i=1

w(~si)
2W (~si)

× Pmodel(~k)Lℓ(~̂si.~̂k) , (24)

which we averaged in spherical shells of k to produce
Pmodel,gridded

ℓ (k), and also an exact determination using

Pmodel,exact
ℓ (k) =

2ℓ + 1

2

∫ 1

−1

dµPmodel(k, µ) Lℓ(µ) . (25)

Our final estimate for the multipole power spectrum is then
given by

Pℓ(k) = P gridded
ℓ (k) + Pmodel,exact

ℓ − Pmodel,gridded
ℓ . (26)

We generated this correction using the best-fitting non-
linear empirical Lorentzian redshift-space power spectrum
(see Section 3.2) as the input model Pmodel(~k).

Figure 10 compares the measurement of the multipole
power spectra in four redshift slices obtained by the direct
sum of Equation 17 with the Yamamoto et al. estimator
of Equation 19. In general the two different techniques for
deriving the multipole power spectra agree well and we ob-
tain measurements of the monopole (ℓ = 0) and quadrupole
(ℓ = 2) with high signal-to-noise. Current galaxy redshift
surveys do not yield a significant detection of the hexade-
capole (ℓ = 4).

The final row of Figure 10 plots the measured
quadrupole-to-monopole ratio P2(k)/P0(k) as a function of
scale for each redshift slice. This statistic has the advantage
of being less sensitive than the power spectrum itself to the
parameters which model the shape of the underlying real-
space galaxy clustering pattern (such as the background cos-
mological parameters or a scale-dependent bias). On large
scales this ratio is expected to asymptote to a constant value
which may be derived from Equation 7:

P2(k)

P0(k)
=

4
3
β + 4

7
β2

1 + 2
3
β + 1

5
β2

, (27)

where β = f/b. This value, indicated by the dotted “Lin-
ear” horizontal line in the bottom row of Figure 10, and
derived using the prediction of f(z) in a ΛCDM model with
Ωm = 0.27, lies in good agreement with the measurements
on large scales in each redshift slice. At smaller scales the
data deviates from this prediction due to the non-linear
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effects which damp the velocity power spectrum. We also
plot the scale-dependent value of P2(k)/P0(k) for the best-
fitting non-linear empirical Lorentzian redshift-space distor-
tion model in each redshift slice, indicated by the “Damp-
ing” line.

5.2 Power spectra of the velocity divergence field

The characteristic angular dependence of the redshift-space
galaxy power spectrum P s

g (k, µ) on its three component
power spectra Pgg(k), Pgθ(k) and Pθθ(k), exhibited by Equa-
tion 4, gives us the opportunity to extract these three power
spectra directly from data. This is of particular interest for
the case of Pθθ(k) because this quantity depends on the
growth rate but not on the galaxy bias, which is considered
to be one of the principle sources of potential systematic
error in redshift-space distortion model-fitting.

The signal-to-noise ratio of the power spectrum mea-
surements from current surveys is not yet sufficiently high to
extract three independent functions cleanly (e.g., Tegmark
et al. 2004) – which is consistent with our failure to detect
the hexadecapole in Figure 10. However, a good approxi-
mation of the galaxy-velocity cross-power spectrum in the
quasi-linear regime is Pgθ = −

√

PggPθθ (Percival & White
2009), which cancels (to first order) non-linear terms in the
power spectra and galaxy bias. Under this approximation we
can fit for the coefficients Pgg(k) and Pθθ(k) in the model
(Song & Kayo 2010)

P s
g (k, µ) = Pgg(k) + 2µ2

√

Pgg(k)Pθθ(k) + µ4Pθθ(k) . (28)

For each separate k-bin, spaced by ∆k = 0.02 h Mpc−1,
we fitted the model of Equation 28 to the stacked measure-
ments of Pg(k, µ) from the WiggleZ survey dataset in four
redshift slices. We performed the fit in 10 Fourier bins up
to kmax = 0.2 h Mpc−1, choosing this upper limit because
Equation 4 will likely not provide a reliable description of
the µ-dependence of the power spectrum at smaller scales
(given that our model fits in Section 4.1 favour the inclusion
of an additional Lorentzian damping term over the range
0.2 < k < 0.3 h Mpc−1).

Figure 11 displays the results of the fits for each red-
shift slice, where for convenience we have divided the mea-
surements of Pθθ(k) by the best-fitting value of β2 = (f/b)2

so that the galaxy and velocity power spectra are expected
to have the same large-scale limit. For comparison we also
plot in each case the non-linear galaxy and velocity power
spectra based on the fitting formulae proposed by Smith et
al. (2003) and Jennings et al. (2011), respectively, together
with the underlying linear matter power spectrum for our
fiducial cosmological parameters at these redshifts.

Our measurements constitute the first determination of
the velocity power spectrum as a function of redshift, and
cleanly reveal the effects that we are modelling. At large
scales k < 0.1 h Mpc−1 the density and velocity power spec-
tra are in close agreement with each other and the input
model linear power spectrum. At smaller scales the mea-
surements diverge: the density power spectra are boosted
in amplitude in a manner that closely matches the fitting
formula of Smith et al. (2003), and the velocity power spec-
tra are damped by non-linear effects. The fitting formula of
Jennings et al. (2011) provides a good match to this damp-
ing: the value of χ2 statistic is (13.4, 11.8, 12.4, 3.6) for the

four redshift slices respectively, for 10 degrees of freedom.
The value of χ2 for the highest redshift bin corresponds to a
2-σ fluctuation. As the χ2 values for the other three redshift
slices fall within the 1-σ range for the distribution, we do
not view this with concern. We also find a tentative indica-
tion that the amplitude of the non-linear correction to the
velocity power spectrum increases with decreasing redshift,
expected as a consequence of the growth of structure.

6 CONCLUSIONS

We have used the WiggleZ Dark Energy Survey dataset to
produce the first precise map of cosmic growth spanning
the epoch of cosmic acceleration and the first systematic
study of the growth history from a single galaxy survey. We
have compared the measured power spectra to 18 different
redshift-space distortion models using a combination of em-
pirical models, fitting formulae calibrated by N-body simu-
lations, and perturbation theory techniques. We itemize our
conclusions as follows:

• Two quasi-linear redshift-space distortion models pro-
vide a good description of our data for scales k < 0.3 h
Mpc−1: the Taruya et al. (2010) model, incorporating extra
angle-dependent correction terms in addition to the den-
sity and velocity power spectra from 2-loop Renormalized
Perturbation Theory, and the Jennings et al. (2011) fit-
ting formula calibrated from N-body simulations. In each
model we included a variable damping parameter. The
growth rates deduced from these two very different mod-
elling techniques agree remarkably well, with the differ-
ence in values being much smaller than the statistical er-
rors in the measurement. The level of this agreement gives
us confidence that our results are not limited by system-
atic errors. We note that the empirical Lorentzian stream-
ing model, where we use the non-linear matter power spec-
trum from Smith et al. (2003), also performs well and the
minimum chi-squared values for these three models typi-
cally differ by ∆χ2 ≈ 1. We quote our final results using
the Jennings et al. (2011) model, which usually produces
the lowest value of χ2: growth rate measurements of f(z) =
(0.60± 0.10, 0.70± 0.07, 0.73± 0.07, 0.70± 0.08) at redshifts
z = (0.22, 0.41, 0.6, 0.78), where we have marginalized over
the variable damping factor and a linear galaxy bias factor.
A more model-independent way of expressing these fits is
f(z) σ8(z) = (0.42±0.07, 0.45±0.04, 0.43±0.04, 0.38±0.04).

• These growth rate measurements are consistent with
those expected in a flat General Relativistic ΛCDM cos-
mological model with matter density Ωm = 0.27. Our ob-
servations therefore indicate that this model provides a self-
consistent description of the growth of cosmic structure from
perturbations and the large-scale, homogeneous cosmic ex-
pansion mapped by supernovae and baryon acoustic oscilla-
tions.

• Assuming the growth rate predicted by the ΛCDM
model we can fit for the parameters of a stochastic scale-
dependent bias described by a galaxy-mass cross-correlation
r(k). We find that this bias is consistent with a deterministic
model r = 1 for the range of scales k < 0.3 h Mpc−1.

• We considered various methods for presenting the in-
formation contained in the redshift-space power spectra, in-
cluding deriving the multipole moments Pℓ(k) using direct
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
et al. estimator of Equation 19. The model lines correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion

model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.

integration of the binned power spectrum P (k, µ) and by
implementing the estimator described by Yamamoto et al.
(2006). Measurements of the quadrupole-to-monopole ratio
P2/P0 as a function of scale k delineate the influence of
redshift space distortions in a manner independent of the
shape of the underlying matter power spectrum or a scale-
dependent bias.

• Under the assumption Pgθ = −
√

PggPθθ, which is a
good approximation in the quasi-linear regime, we used the
redshift-space power spectra to fit directly for Pgg(k) and
Pθθ(k). We found that (within an overall normalization fac-
tor) the galaxy and velocity power spectra are consistent
with each other and with the model linear power spectrum
at low k. For k > 0.1 h Mpc−1 we delineated for the first
time the characteristic non-linear damping of the velocity
power spectrum as a function of redshift, with a tentative
indication that the amplitude of the non-linear effects in-

creases with decreasing redshifts. The Jennings et al. (2011)
fitting formula provides a good fit to these power spectra.

A future investigation will involve the confrontation of
this data with a range of modified-gravity models, combining
the large-scale structure measurements with self-consistent
fits to the Cosmic Microwave Background observations. Fur-
thermore, a joint analysis of the redshift-space distortions
and Alcock-Paczynski effect is also in preparation.
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Figure 11. Measurement of the WiggleZ survey galaxy-galaxy and velocity-velocity power spectra in four redshift slices by maximum-
likelihood fitting to the stacked measurements of Pg(k, µ) across the different survey regions using the model of Equation 28. The
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clarity. For comparison, we plot the linear-regime matter power spectra, the non-linear matter power spectra from Smith et al. (2003)
and the non-linear velocity power spectra from Jennings et al. (2011). Our extraction of these two power spectra rests on the assumption
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