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Analytical covariance

The covariance describes the fluctuations and correlations of
our measurements between different statistics and scales:

Cov[&1 (1), E2(8)] = (€1 (r)E2(8)) — (€1 (M))NE2(5))

We need to know the data covariance for model comparison
and Bayesian likelihood analysis

There are different methods for obtaining a covariance:

* Fluctuations across an ensemble of numerical simulations
 Methods internal to the data (e.g. jackknife, bootstrap)
* Analytical error propagation

Analytical covariance can be useful if data vectors are large
and/or sufficient numerical simulations are unavailable!



Analytical covariance
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ABSTRACT

Measurements of the peculiar velocities of large samples of galaxies enable new tests of the standard cosmological model,
including determination of the growth rate of cosmic structure that encodes gravitational physics. With the size of such samples
now approaching hundreds of thousands of galaxies, complex statistical analysis techniques and models are required to extract
cosmological information. In this paper we summarise how correlation functions between galaxy velocities, and with the
surrounding large-scale structure, may be utilised to test cosmological models. We present new determinations of the analytical
covariance between such correlation functions, which may be useful for cosmological likelihood analyses. The statistical model
we use to determine these covariances includes the sample selection functions, observational noise, curved-sky effects and
redshift-space distortions. By comparing these covariance determinations with corresponding estimates from large suites of
cosmological simulations, we demonstrate that these analytical models recover the key features of the covariance between
different statistics and separations, and produce similar measurements of the growth rate of structure.
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Velocity correlations

* What velocity correlation statistics are we interested in?

» Let’s start from the galaxy position correlation function!

d3k : dk k*
S;gg(r) - <6g(x) 5g(x + 1')> - J (21)3 ng(k) e~k fgg(r) = j 2772 ng(k) Jo(kr)

Neglecting RSD, this is an isotropic function, only depending on the
magnitude r = |r|, not the direction #. This is very useful when comparing
correlation function measurements with theoretical predictions!

* Now let’s consider 3D velocities in linear theory

kiaHf . A3k k; k; |
ﬁl(k) - _l ]?2 f 6m(k) l/)ij(r) — (Ui(x) vj(x + T)) — ] (271_)3 sz va(k) e—lk-r

The velocity correlation tensor 1;;(r) is not an isotropic function!



Velocity correlations

* Gorski (1988) showed that ¥;;(r) could be expressed in
terms of two isotropic functions 1| () and 1 (1) :
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Y, (r) : the extent to which galaxies are
travelling together in the same bulk flow

Y (r) : the extent to
which galaxies are
approaching/receding
along the line joining
them




Velocity correlations

Consider the general correlation
between the radial velocities uy

@ and ug of two galaxies with

separation vectorr ...

Eu(1,0) = (ug ug) =, (r) + [Py (r) — P (r)] cos?6

* The radial velocity correlation function is
dependent on the angle of the separation vector
to the line-of-sight — angle-averaging would lose
information

* We can use the multipoles of &,,,(r, 8) to retain
this information, which Gorski et al. (1989)
defined as the ¥4 (1) and Y, () statistics



Velocity correlations
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* In general, we will consider galaxy and velocity auto-
correlations, and galaxy-velocity cross-correlations

* For N-body simulations we know the full 3D velocities. We can analyse a
set of 3 correlation functions: (fgg, $ g EW) — simulation data vector

* For real observations we only know the radial velocities. Including RSD,
we can analyse a set of 5 correlation functions:(£0 4, €24, &3, 1, 2) =
observation data vector

* Our goal: can we analytically predict the covariance of these
groups of correlation functions?



Mock catalogues for testing

We use z < 0.1 spheres drawn 1o

from 600 independent COLA
mocks

Density and velocity sub-
samples with varying galaxy
number density

Apply velocity noise, which is
5% of distance

Applying optimal weights to
density and velocity tracers

For observational statistics, we
include curved-sky and RSD
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Approximations!

To determine the
analytical covariances,
we make some
approximations!

PHYSICIST ENGINEER COSMOLOGIST
APPROXIMATIONS APPROXIMATIONS APPROXIMATIONS
WELL ASSUME THE | | LET'S ASSUME THIS ASSUME PI IS ONE.
CURVE OF THIS RAIL | | CURVE DEVIATES FROM PRETTY SURE ITS
IS5 A CIRCULAR ARC A CIRCLE BY NO MORE BIGGER THAN THAT.
WITH RADIUS A. THAN 1 PART IN 1000, | | ok \JE ¢AN MAKE \*
IT\TEN. WHATEVER. ~

https://xkcd.com/2205/
* Galaxy overdensity and velocity are Gaussian random fields

* Neglect higher-order correlations (e.g., the fact that velocity tracers
preferentially sample overdense locations)

* Neglect the variation of the selection function and noise fields on the

scale of the separation vector

* Use the “local plane-parallel approximation” (directions to locations on
the scale of the separation vector are parallel)




Fun maths!

Inte_gral over Integral Selection o
Fourier modes : odel power
over survey function spectra
) volume and weights
Vector separations \
’/ Vd®k _jy. (- d>x : :
Cov [fgg(l') ng(S)J = or)3 e ik (r S)/ (x)[gg(k) +o (h)l - Noise fur.lct|on
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Cov [ (). b (9)] =Ng,, | o3 f T [Rx P R (R + o2 (F-9)

F(0) Pgg (k) + o ()| | £200 Py () (8- K) 8- K) + 07 (%) (8- 9)

£ — a2 V a3k ,—ik-(r-s) d3x
Cov [€v(0.£0u 9] =N}, [ -5 /75{
2 2 2 A ~ r
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n - Vd3 k d3x -
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Correlation function measurements

* For the “simulation” 3D statistics: ({gg, S gvr fvv)
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Correlation function measurements

* For the “observation” LOS statistics: (fgg, fﬁg, {;u; 1P1;1/12)
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Correlation function measurements

* For the “observation” LOS statistics: (fgg, fﬁg, {;u; 1P1;1/12)
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Analytical versus mock covariance

* For the “simulation” 3D statistics: ({gg, S gvr fvv)
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Analytical versus mock covariance

* For the “observation” LOS statistics: (fgg, fgg, siéu, 1P1;1/J2)
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Growth rate fits

* For the “simulation” 3D statistics: (fgg, S g fvv)
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Growth rate fits

* For the “observation” LOS statistics: (fgg, fég, {éu, 1,01,1/J2)
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Conclusions
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-.|* We have computed analytical covariances for
velocity correlations including selection function,
noise, curved-sky and RSD

of the dispersion across simulations

* Growth rate fits using the analytical and
simulation covariances agree well

* Analytical covariances could be a useful in cases
where sufficient simulations are unavailable
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Image credit: Courtois, Pomarede, Tully et al, Cosmic Flows

= + The analytical covariance is a good representation [ -+~




