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Analytical covariance
• The covariance describes the fluctuations and correlations of 

our measurements between different statistics and scales:

Cov 𝜉!(𝑟), 𝜉"(𝑠) = 𝜉!(𝑟)𝜉"(𝑠) − 𝜉!(𝑟) 𝜉"(𝑠)

• We need to know the data covariance for model comparison 
and Bayesian likelihood analysis

• There are different methods for obtaining a covariance:
• Fluctuations across an ensemble of numerical simulations
• Methods internal to the data (e.g. jackknife, bootstrap)
• Analytical error propagation

• Analytical covariance can be useful if data vectors are large 
and/or sufficient numerical simulations are unavailable!



Analytical covariance
Paper available at: https://arxiv.org/abs/2308.15735

https://arxiv.org/abs/2308.15735


Velocity correlations

• What velocity correlation statistics are we interested in?

• Let’s start from the galaxy position correlation function!

𝜉!!(𝒓) = 𝛿! 𝒙 𝛿!(𝒙 + 𝒓) = +
𝑑"𝒌
2𝜋 " 𝑃!! 𝒌 𝑒#$𝒌&𝒓

Neglecting RSD, this is an isotropic function, only depending on the 
magnitude 𝑟 = 𝒓 , not the direction $𝒓.  This is very useful when comparing 
correlation function measurements with theoretical predictions!

𝜉!! 𝑟 = +
𝑑𝑘 𝑘(

2𝜋( 𝑃!! 𝑘 𝑗)(𝑘𝑟)

• Now let’s consider 3D velocities in linear theory

5𝑣$ 𝒌 = −
𝑖 𝑘$ 𝑎 𝐻 𝑓

𝑘(
<𝛿*(𝒌) 𝜓$+(𝒓) = 𝑣$ 𝒙 𝑣+(𝒙 + 𝒓) = +

𝑑"𝒌
2𝜋 "

𝑘$ 𝑘+
𝑘( 𝑃,, 𝒌 𝑒#$𝒌&𝒓

The velocity correlation tensor 𝜓!"(𝒓) is not an isotropic function!



Velocity correlations

• Gorski (1988) showed that 𝜓>?(𝒓) could be expressed in 
terms of two isotropic functions 𝜓@ 𝑟 and 𝜓∥ 𝑟 :

𝜓!" 𝒓 = 𝜓# 𝑟 𝛿!"$ + 𝜓∥(𝑟) − 𝜓#(𝑟)
𝑟! 𝑟"
𝑟&

𝜓∥ 𝑟 = +
𝑑𝑘 𝑘(

2𝜋( 𝑃,, 𝑘 𝑗) 𝑘𝑟 −
2𝑗. 𝑘𝑟
𝑘𝑟𝜓/ 𝑟 = +

𝑑𝑘 𝑘(

2𝜋( 𝑃,, 𝑘
𝑗. 𝑘𝑟
𝑘𝑟

𝜓# 𝑟 : the extent to which galaxies are 
travelling together in the same bulk flow

𝜓∥ 𝑟 : the extent to 
which galaxies are 
approaching/receding 
along the line joining 
them



Velocity correlations

𝑢+

𝑢,

𝜃
𝑟

𝜉'' 𝑟, 𝜃 = 𝑢( 𝑢) = 𝜓# 𝑟 + 𝜓∥(𝑟) − 𝜓#(𝑟) cos&𝜃

• The radial velocity correlation function is 
dependent on the angle of the separation vector 
to the line-of-sight → angle-averaging would lose 
information

• We can use the multipoles of 𝜉'' 𝑟, 𝜃 to retain 
this information, which Gorski et al. (1989) 
defined as the 𝜓*(𝑟) and 𝜓&(𝑟) statistics

Consider the general correlation 
between the radial velocities 𝑢B
and 𝑢C of two galaxies with 
separation vector 𝒓 …



Velocity correlations

• In general, we will consider galaxy and velocity auto-
correlations, and galaxy-velocity cross-correlations 

• For N-body simulations we know the full 3D velocities.  We can analyse a 
set of 3 correlation functions: 𝜉++, 𝜉+,, 𝜉,, → simulation data vector

• For real observations we only know the radial velocities.  Including RSD, 
we can analyse a set of 5 correlation functions: 𝜉++- , 𝜉++& , 𝜉+'* , 𝜓*, 𝜓& →
observation data vector

• Our goal: can we analytically predict the covariance of these 
groups of correlation functions?



Mock catalogues for testing
• We use 𝑧 < 0.1 spheres drawn 

from 600 independent COLA 
mocks

• Density and velocity sub-
samples with varying galaxy 
number density

• Apply velocity noise, which is 
5% of distance

• Applying optimal weights to 
density and velocity tracers

• For observational statistics, we 
include curved-sky and RSD

1. Measure correlation 
functions (see Ryan’s talk)

2. Compare analytical and 
simulation covariances

3. Fit growth rates



Approximations!

• Galaxy overdensity and velocity are Gaussian random fields

• Neglect higher-order correlations (e.g., the fact that velocity tracers 
preferentially sample overdense locations)

• Neglect the variation of the selection function and noise fields on the 
scale of the separation vector

• Use the “local plane-parallel approximation” (directions to locations on 
the scale of the separation vector are parallel) 

To determine the 
analytical covariances,

we make some 
approximations!

https://xkcd.com/2205/



Fun maths!
Integral over 

Fourier modes
Integral 

over survey 
volume

Selection 
function 

and weights

Noise function 
and weights

Vector separations

Model power
spectra



Correlation function measurements

• For the “simulation” 3D statistics: 𝜉DD, 𝜉DE, 𝜉EE



Correlation function measurements

• For the “observation” LOS statistics: 𝜉DDF , 𝜉DD" , 𝜉DG! , 𝜓!, 𝜓"



Correlation function measurements

• For the “observation” LOS statistics: 𝜉DDF , 𝜉DD" , 𝜉DG! , 𝜓!, 𝜓"



Analytical versus mock covariance

• For the “simulation” 3D statistics: 𝜉DD, 𝜉DE, 𝜉EE



Analytical versus mock covariance

• For the “observation” LOS statistics: 𝜉DDF , 𝜉DD" , 𝜉DG! , 𝜓!, 𝜓"



Growth rate fits
• For the “simulation” 3D statistics: 𝜉DD, 𝜉DE, 𝜉EE

Credit: Ryan Turner



Growth rate fits
• For the “observation” LOS statistics: 𝜉DDF , 𝜉DD" , 𝜉DG! , 𝜓!, 𝜓"

Credit: Ryan Turner
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Conclusions

• We have computed analytical covariances for 
velocity correlations including selection function, 
noise, curved-sky and RSD

• The analytical covariance is a good representation 
of the dispersion across simulations

• Growth rate fits using the analytical and 
simulation covariances agree well

• Analytical covariances could be a useful in cases 
where sufficient simulations are unavailable


