## This week in the physics course

- Lectures will cover Chapter 16 (Temperature and Heat) and start Chapter 17 (Thermal Behaviour of Matter)
- Tutorial class will practise problems from last week's lectures on Chapter 15 (Fluid Motion)
- Laboratory class will perform buoyancy experiments
- Physics help available in MASH centre (Wayne Rowlands, Tuesday 10.30-12.30 and Thursday 2.30-4.30)
- Don't hesitate to get in touch with any questions cblake@swin.edu.au


## Chapter 16 : Temperature and Heat

- Difference in temperature causes heat energy to flow
- Measuring temperature with thermometers
- Heat capacity of a material determines temperature rise
- Heat transfer by conduction, convection and radiation



## Temperature and Heat Energy

- A temperature difference causes heat energy to flow to bring systems into equilibrium



## Temperature and Heat Energy

- Temperature is associated with the internal molecular energy of a substance



## Units of temperature

- Absolute temperature is measured in units of Kelvin (K) where 0 K is absolute zero (at which a gas has zero pressure)



## Units of temperature

- Absolute temperature is measured in units of Kelvin (K) where 0 K is absolute zero (at which a gas has zero pressure)
- The Celsius temperature scale is offset such that the melting point of ice at standard atmospheric pressure is $0^{\circ} \mathrm{C}$


$$
T_{\text {Celsius }}=T_{\text {Kelvin }}-273.15
$$

1 degree change in Celsius = 1 degree change in Kelvin

## Units of temperature

- Temperature is measured by thermometers which are brought into thermal equilibrium with the system

Using expansion ...


Using gas pressure ...


## Heat Capacity and Specific Heat

- When heat energy flows into a substance, its temperature will increase
- The specific heat capacity is the heat energy (in J) needed to raise the temperature of 1 kg of the substance by 1 K

Heat energy in J


Mass in kg

## Heat Capacity and Specific Heat

- Values given in Table 16.1 of the textbook (page 306 of $3^{\text {rd }}$ ed.)

|  | Specific $\mathrm{Heat}, \mathrm{C}$ |  |
| :--- | :---: | :---: |
| Substance | SIUnits: $/ \mathrm{kg} \cdot \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}, \mathrm{Kcal} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, or $\mathrm{Btu} / \mathrm{lb} \cdot{ }^{\circ} \mathrm{F}$ |  |
| Aluminum | 900 | 0.215 |
| Concrete | 880 | 0.24 |
| Copper | 386 | 0.0923 |
| Iron | 447 | 0.107 |
| Glass | 753 | 0.18 |
| Mercury | 140 | 0.033 |
| Steel | 502 | 0.12 |
| Stone (granite) | 840 | 0.20 |
| Water: |  |  |
| $\quad$ Liquid | 4184 | 1.00 |
| Ice, $-10^{\circ} \mathrm{C}$ | 2050 | 0.49 |
| Wood | 1400 | 0.33 |

[^0]Specific heat capacity determines the heat energy needed to raise the temperature:

$$
Q=m c \Delta T
$$

Two identical mass metals at $95^{\circ} \mathrm{C}$ are placed in separate identical beakers of water at $25^{\circ} \mathrm{C}$. You measure the temperature of the water after each metal has cooled by $10^{\circ} \mathrm{C}$ and find that the water in A is hotter than the water in B . Which metal has the higher specific heat ?


0\%

## 1. Metal A

2. Metal B
3. They are the same
4. Can't tell since not in equilibrium

Two identical mass metals at $95^{\circ} \mathrm{C}$ are placed in separate identical beakers of water at $25^{\circ} \mathrm{C}$. You measure the temperature of the water after each metal has cooled by $10^{\circ} \mathrm{C}$ and find that the water in A is hotter than the water in B . Which metal has the higher specific heat ?


Heat energy lost by metal = heat energy gained by water

$$
\begin{gathered}
\text { Metal } A: m_{\text {metal }} c_{A} \Delta T_{\text {metal }}=m_{\text {water }} c_{\text {water }} \Delta T_{A} \\
\text { Metal } B: m_{\text {metal }} c_{B} \Delta T_{\text {metal }}=m_{\text {water }} c_{\text {water }} \Delta T_{B} \\
\Delta T_{A}>\Delta T_{B} \rightarrow c_{A}>c_{B}
\end{gathered}
$$

## Heat Capacity and Specific Heat

(a) How much heat does it take to bring a 3.5 kg iron frypan from $20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ ? (b) If a 2 kW stovetop heats the pan, how long will this take? $\left(c_{\text {iron }}=447 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)$

$$
\begin{array}{cc}
\text { (a) } Q=m c \Delta T & \text { (b) Power }=\text { Energy/Time } \\
m=3.5 \mathrm{~kg} & \text { Time }=\text { Energy } / \text { Power } \\
c=447 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} & \text { Energy }=0.16 \mathrm{MJ}=1.6 \times 10^{5} \mathrm{~J} \\
\Delta T=100 \mathrm{~K} & \text { Power }=2 \mathrm{~kW}=2 \times 10^{3} \mathrm{~W} \\
Q=3.5 \times 447 \times 100=0.16 \mathrm{MJ} & t=\frac{1.6 \times 10^{5}}{2 \times 10^{3}}=78 \mathrm{~s}
\end{array}
$$

Specific heat capacity determines the heat energy needed to raise the temperature:

$$
Q=m c \Delta T
$$

(c) The same 3.5 kg iron frypan at $120^{\circ} \mathrm{C}$ is plunged into a sink filled with 2 litres of water at $20^{\circ} \mathrm{C}$. What is the equilibrium temperature? $\left(c_{\text {iron }}=447 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, c_{\text {water }}=4184 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)$

A

A

A B
(c)
(a)
B
(b)

- Heat energy flows until equilibrium is reached
- Heat energy lost by frypan = Heat energy gained by water
- Total heat energy change $=0$ (conservation of energy)
(c) The same 3.5 kg iron frypan at $120^{\circ} \mathrm{C}$ is plunged into a sink filled with 2 litres of water at $20^{\circ} \mathrm{C}$. What is the equilibrium temperature? $\left(c_{\text {iron }}=447 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, c_{\text {water }}=4184 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)$

$$
\begin{aligned}
& Q=m c \Delta T=m c\left(T_{f}-T_{i}\right) \quad \text { and } \quad \sum Q=0 \\
& m_{1} c_{1}\left(T_{e q}-T_{1}\right)+m_{2} c_{2}\left(T_{e q}-T_{2}\right)=0 \\
& T_{e q}\left(m_{1} c_{1}+m_{2} c_{2}\right)=m_{1} c_{1} T_{1}+m_{2} c_{2} T_{2} \\
& T_{e q}=\frac{m_{1} c_{1} T_{1}+m_{2} c_{2} T_{2}}{m_{1} c_{1}+m_{2} c_{2}} \\
& T_{e q}=\frac{3.5 \times 447 \times 393+2 \times 4184 \times 293}{3.5 \times 447+2 \times 4184} \quad T_{e q}=308.75^{\circ} \mathrm{K}=36^{\circ} \mathrm{C}
\end{aligned}
$$

## Heat Transfer

- How is heat energy transferred from one place to another?

conduction

convection

radiation

Usually for a given situation one mechanism will dominate however in some cases all three need to be considered simultaneously.

## Conduction

- Heat transfer by direct molecular contact



## Conduction

- Heat transfer by direct molecular contact


Rapidly moving (HOT) molecules
Molecules being bumped and heated up
Cold Molecules

## Conduction

- Heat flow rate $(\mathrm{H})$ increases with area and temperature drop

$$
H=\frac{\Delta Q}{\Delta t} \propto A \frac{\Delta T}{\Delta x}
$$

heat flows from
high $T$ to low $T$


FIGURE 16.5 Heat flows from the hotter to the cooler face of the slab.

Heat flow is the rate of heat transfer by conduction. The larger the area the greater the heat flow. The higher the thermal conductivity the greater the heat flow. Heat flow is driven by a temperature gradient, so the larger the temperature difference the greater the heat flow.

## Conduction

Conduction is heat transfer through direct physical contact. Materials are quantified by their thermal conductivity $k$ ( $W^{-1} \mathrm{~K}^{-1}$ ).

- Values given in Table 16.2 of the textbook (page 308 of $3^{\text {rd }}$ ed.)

Thermal Conductivity, $k$

| Material | SIUnits:W/m•K | BritishUnits: Btu• in/h $\cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$ |
| :--- | :---: | :---: |
| Air | 0.026 | 0.18 |
| Aluminum | 237 | 1644 |
| Concrete | 1 | 7 |
| $\quad$ (varies with mix) | 401 |  |
| Copper | 0.042 | 2780 |
| Fiberglass | $0.7-0.9$ | 0.29 |
| Glass | 0.043 | $5-6$ |
| Goose down | 0.14 | 0.30 |
| Helium | 80.4 | 0.97 |
| Iron | 46 | 558 |
| Steel | 0.029 | 319 |
| Styrofoam | 0.61 | 0.20 |
| Water | 0.11 | 4.2 |
| Wood (pine) |  | 0.78 |

[^1]A 1 m rod of gold is connected to a 1 m rod of silver. The gold end is placed in boiling water and the silver end is placed in ice water. Where is it $50^{\circ} \mathrm{C}$ ?
0\%

1. At the midpoint
2. Near the midpoint but closer to the gold end
3. Near the midpoint but closer to the silver end

$$
\text { Heat flow } \quad H=-k A \frac{d T}{d x}
$$

$$
\begin{aligned}
k_{\text {Gold }} & =310 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1} \\
k_{\text {Silver }} & =418 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

A 1 m rod of gold is connected to a 1 m rod of silver. The gold end is placed in boiling water and the silver end is placed in ice water. Where is it $50^{\circ} \mathrm{C}$ ?

Heat energy is flowing from the boiling water to the ice at a rate H
Larger conductivity kimplies smaller temperature gradient $\mathrm{dT} / \mathrm{dx}$
Temperature drop is smaller over the silver than the gold
Temperature passes 50 degrees in the gold

$$
\begin{array}{|cc}
\hline \text { Heat flow } \quad H=-k A \frac{d T}{d x} & \begin{array}{c}
k_{\text {Gold }}=310 \mathrm{Wm}^{-1} \mathrm{~K}^{-1} \\
k_{\text {Silver }}
\end{array} \\
& \\
\hline
\end{array}
$$

## Convection

- Heat transfer by bulk motion of a fluid



## Convection



Natural convection relies on the buoyancy effect alone to move the fluid.


Forced convection drastically increases the fluid movement by using a fan or pump.

Calculations for convection are extremely complicated due to fluid dynamics and remains one of the important unsolved problems in science.

## Radiation

- Heat transfer by electromagnetic radiation



## Radiation

## - Electromagnetic radiation?

Penetrates
Earth
Atmosphere?
Wavelength
(meters)


Temperature of bodies emitting
the wavelength

## Radiation

## Stefan-Boltzmann Law



## Radiation

- Emissivity usually assumed to be e=1 in our problems sometimes called "black body emission"

$$
P_{\text {emitted }}=\sigma A T_{b o d y}^{4}
$$

- Objects also absorb energy from surroundings at a rate given by the same law

$$
P_{a b s o r b e d}=\sigma A T_{a m b i e n t}^{4}
$$

$$
\begin{array}{cc}
P=\text { power in } W, & \sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}, \\
A=\text { area in } \mathrm{m}^{2}, & T=\text { temperature in } K
\end{array}
$$

## Radiation

The Sun radiates energy at the rate $P=3.9 \times 10^{26} \mathrm{~W}$, and its radius is $R=$ $7 \times 10^{8} \mathrm{~m}$. Assuming the Sun is a perfect emitter $(\mathrm{e}=1)$, what is its surface temperature?


## Thermal Energy Balance

A poorly insulated water heater loses heat by conduction at the rate of $120 W$ for each degree Celsius difference between the water and its surroundings. It's electrically heated at 2.5 kW in a basement of $15^{\circ} \mathrm{C}$. What is the water temperature if the heating element operates continuously?

Water receives energy from heating element, and loses it by conduction at the same rate

Gain rate $=2500 \mathrm{~W}$, Loss rate $=(T-15) \times 120 \mathrm{~W}$
Gain rate $=$ Loss rate when $\mathrm{T}=36^{\circ} \mathrm{C}$

Thermal Energy Balance is where the heat gains are equal to the heat losses and the system stays in equilibrium.

## Temperature and Heat - Summary

- Difference in temperature $T$ causes heat energy $Q$ to flow
- Specific heat capacity of a material

$$
Q=m c \Delta T
$$

- Heat energy flow by conduction

$$
\frac{\Delta Q}{\Delta t}=-k A \frac{\Delta T}{\Delta x}
$$

- Heat energy flow by radiation

$$
P=\sigma A T^{4}
$$

## Chapter 17 : Thermal Behaviour of Matter

- How does matter respond to heating?
- A gas may undergo changes in pressure or volume
- These may be understood in terms of molecular motion
- A material may change phase, releasing energy
- A material may undergo thermal expansion


Solid


Liquid


Gas

## Ideal gas law



- Pressure P
- Volume V
- Temperature T
- N molecules
$P V=N k_{B} T$
$/$
Boltzmann's constant

$$
k_{B}=1.38 \times 10^{-23} J K^{-1}
$$

## Ideal gas law

- Ideal gas law with Boltzmann’s constant:

$$
P V=N k_{B} T \quad k_{B}=1.38 \times 10^{-23} J K^{-1}
$$

- The number of molecules N may be measured in moles n using Avogadro's number $\mathrm{N}_{\mathrm{A}}$

$$
1 \text { mole }=N_{A}=6.022 \times 10^{23} \text { molecules }
$$

- The ideal gas law may also be expressed in terms of number of moles $n$ using the universal gas constant $R$

$$
P V=n R T \quad R=8.314 J K^{-1} \mathrm{~mol}^{-1}
$$

I double the volume of the cylinder and reduce the absolute pressure from 1 atm to 0.5 atm . How does the final temperature compare to the initial ?

1. $T_{f}>T_{i}$
2. $T_{f}=T_{i}$
3. $T_{f}<T_{i}$
```
\square1■2■3■4
```

4. Can't tell without $n$

$$
\begin{aligned}
& \text { If quantity of gas is fixed ( } \mathrm{n}, \mathrm{~m} \text { or } \mathrm{N} \text { constant) } \\
& \text { then the equation of state relating initial and } \quad \frac{\boldsymbol{P}_{\boldsymbol{i}} \boldsymbol{V}_{\boldsymbol{i}}}{\boldsymbol{T}_{\boldsymbol{i}}}=\frac{\boldsymbol{P}_{\boldsymbol{f}} \boldsymbol{V}_{\boldsymbol{f}}}{\boldsymbol{T}_{\boldsymbol{f}}} \\
& \text { final properties reduces to }
\end{aligned}
$$

## Kinetic theory of gases



- On a microscopic level, a gas consists of moving molecules
- Pressure is generated by molecules colliding with the walls
- Temperature is described by the molecules' kinetic energy


## Kinetic theory of gases

- We can relate the pressure to the molecular velocity!
(calculation in textbook)

$$
P=\frac{F}{A}=\frac{m N \overline{v^{2}}}{3 V}
$$

$$
\text { But: } P V=N k_{B} T
$$

$$
\text { So: } \frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T
$$

Temperature measures the average kinetic energy!

> Force of molecular collision with wall

$$
\bar{F} \Delta t=\Delta p=2 m v_{x}
$$



The time for a "round trip" is $\Delta t=\frac{2 L}{v_{x}}$
so the average force is $\bar{F}=\frac{2 m v_{x}}{\frac{2 L}{v_{x}}}=\frac{m v_{x}^{2}}{L}$
and for N molecules: $\quad \bar{F}=\frac{m N \overline{v_{x}^{2}}}{L}$

## Kinetic theory of gases

Temperature measures the average kinetic energy associated with random translational motion of an atom


Low Temperature


High Temperature


Two identical cylinders, one with $\mathrm{H}_{2}$ and one with $N_{2}$, have different gauge pressures but the same temperature. Which cylinder has the fastest molecules.

1. The high pressure vessel
2. The low pressure vessel
3. The one with Hydrogen
4. The one with Nitrogen
5. Insufficient information to tell

Two identical cylinders, one with $\mathrm{H}_{2}$ and one with $N_{2}$, have different gauge pressures but the same temperature. Which cylinder has the fastest molecules.

$$
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T
$$

Temperature and mass dictate velocity
Temperature is the same, but mass $\left(\mathrm{H}_{2}\right)<\operatorname{mass}\left(\mathrm{N}_{2}\right)$
So speed $\left(\mathrm{H}_{2}\right)>\operatorname{speed}\left(\mathrm{N}_{2}\right)$

## Molecular Energy and Speed

Find the average kinetic energy of a molecule of air at room temperature ( $T=20^{\circ} \mathrm{C}$ ) and determine the speed of a nitrogen molecule $\left(N_{2}\right)$ with this energy.

$$
\begin{gathered}
\text { Average kinetic energy }=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T \\
T=293 K \rightarrow \overline{K E}=\frac{3}{2} \times 1.38 \times 10^{-23} \times 293=6.07 \times 10^{-21} \mathrm{~J} \\
K E=\frac{1}{2} m v^{2} \rightarrow v=\sqrt{2 \times K E / \mathrm{m}} \\
m=2 \times 14 \times 1.66 \times 10^{-27} \mathrm{~kg}=4.65 \times 10^{-26} \mathrm{~kg} \\
\rightarrow v=\sqrt{2 \times 6.07 \times 10^{-21} / 4.65 \times 10^{-26}}=511 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

## Molecular Energy and Speed



## Phase Changes

- Phase changes (solid, liquid, gas) are accompanied by release or absorption of heat energy



## Phase Changes

- The amount of energy involved, per unit mass, is known as the latent heat



## Phase Changes

eg. adding heat to ice, initially with $\mathrm{T}=-20^{\circ} \mathrm{C}$ at 1 atm .


The energy per unit mass to change a phase is called the latent heat of transformation $L$. For solid-liquid change its heat of fusion $L_{f}$, for liquid-gas change its heat of vaporisation $L_{v}$.

## Phase Changes

- Values given in Table 17.1 of the textbook (page 326 of $3^{\text {rd }}$ ed.)

TABLE 17.1 Heats of Transformation (at Atmospheric Pressure)

| Substance | Melting Point $(\mathrm{K})$ | $L_{\mathrm{f}}(\mathrm{k} / \mathrm{kg})$ | Boiling Point $(\mathrm{K})$ | $L_{\mathrm{v}}(\mathrm{k} / \mathrm{kg})$ |
| :--- | :---: | :---: | :---: | :---: |
| Alcohol, ethyl | 159 | 109 | 351 | 879 |
| Copper | 1357 | 205 | 2840 | 4726 |
| Lead | 601 | 24.7 | 2013 | 858 |
| Mercury | 234 | 11.3 | 630 | 296 |
| Oxygen | 54.8 | 13.8 | 90.2 | 213 |
| Sulfur | 388 | 38.5 | 718 | 287 |
| Water | 273 | 334 | 373 | 2257 |
| Uranium | 1406 | 82.8 | 4091 | 1875 |

$Q=m L$

Take the energy required to melt 1 kg of ice and instead heat 1 kg of water. How much has the temperature of the water changed by ?

1. $80^{\circ} \mathrm{C}$
2. $539^{\circ} \mathrm{C}$
3. $13^{\circ} \mathrm{C}$
4. $2^{\circ} \mathrm{C}$
5. Insufficient Information

$$
\begin{array}{lc}
Q=m c \Delta T & c_{\text {water }}=4184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1} \\
Q=m L & L_{v}=2257 \mathrm{~kJ} \mathrm{~kg}^{-1} L_{f}=334 \mathrm{~kJ} \mathrm{~kg}^{-1}
\end{array}
$$

Take the energy required to melt 1 kg of ice and instead heat 1 kg of water. How much has the temperature of the water changed by ?

Energy required to melt 1 kg of ice $=334 \mathrm{~kJ}$
$Q=m c \Delta T \rightarrow \Delta T=\frac{Q}{c}=\frac{334,000}{4,184}=80 \mathrm{~K}$
However, it depends on initial T , since water may boil!

$$
\begin{array}{lc}
Q=m c \Delta T & c_{\text {water }}=4184 J^{-1} \mathrm{~kg}^{-1} \\
Q=m L & L_{v}=2257 \mathrm{~kJ} \mathrm{~kg}^{-1} L_{f}=334 \mathrm{~kJ} \mathrm{~kg}^{-1}
\end{array}
$$

## Phase Changes

A 20 g ice cube at $-3^{\circ} \mathrm{C}$ is placed in a polystyrene cup containing 0.20 kg water at $\left.T=20^{\circ} \mathrm{C}\right)$. What is the final temperature of the water?

Energy is required to: (1) heat the ice cube to $0^{\circ} \mathrm{C}$, (2) melt the ice cube

$$
\begin{gathered}
Q_{1}=m c_{\text {ice }} \Delta T=0.02 \times 2050 \times 3=123 \mathrm{~J} \\
Q_{2}=m L=0.02 \times 334,000=6680 \mathrm{~J} \\
\text { Total energy }=123+6680=6803 \mathrm{~J} \\
Q_{\text {tot }}=m c_{\text {water }} \Delta T \rightarrow \Delta T=Q_{\text {tot }} / m c_{\text {water }} \\
\Delta T=\frac{6803}{0.2 \times 4184}=8 \mathrm{~K} \rightarrow T_{\text {final }}=12^{\circ} \mathrm{C}
\end{gathered}
$$

## Thermal Expansion

- Solids expand when heated



## Thermal Expansion

- The fractional change in length or volume as T increases is described by coefficients of expansion

Fractional length change:


$$
\frac{\Delta L}{L}=\alpha \Delta T
$$

[coefficient of linear expansion]
Fractional volume change:

$$
\frac{\Delta V}{V}=\beta \Delta T
$$

[coefficient of volume expansion]

## Thermal Expansion

- Values given in Table 17.2 of the textbook (page 328 of $3^{\text {rd }}$ ed.)

Coefficient of linear expansion $\alpha=\frac{\Delta L / L}{\Delta T} \quad$ Coefficient of volumetric expansion $\beta=\frac{\Delta V / V}{\Delta T}$

| Solids | $\alpha\left(K^{-1}\right)$ | Liquids and Gases | $\boldsymbol{\beta}\left(\mathrm{K}^{-1}\right)$ |
| :---: | :---: | :---: | :---: |
| Aluminum | $24 \times 10^{-6}$ | Air | $3.7 \times 10^{-3}$ |
| Brass | $19 \times 10^{-6}$ | Alcohol, ethyl | $75 \times 10^{-5}$ |
| Copper | $17 \times 10^{-6}$ | Gasoline | $95 \times 10^{-5}$ |
| Glass (Pyrex) | $3.2 \times 10^{-6}$ | Mercury | $18 \times 10^{-5}$ |
| Ice | $51 \times 10^{-6}$ | Water, $1^{\circ} \mathrm{C}$ | $-4.8 \times 10^{-5}$ |
| Invar ${ }^{\dagger}$ | $0.9 \times 10^{-6}$ | Water, $20^{\circ} \mathrm{C}$ | $20 \times 10^{-5}$ |
| Steel | $12 \times 10^{-6}$ | Water, $50^{\circ} \mathrm{C}$ | $50 \times 10^{-5}$ |

## Often only care about the change in 1 dimension or looking at long thin objects (railway).

A bimetallic strip is made of dissimilar metals with different coefficients of volumetric expansion (shown). When heated the strip bends


## 1. upwards <br> 2. downwards

3. it stays level and lengthens
4. Insufficient information

$$
\Delta V=V \beta \Delta T
$$

A bimetallic strip is made of dissimilar metals with different coefficients of volumetric expansion (shown). When heated the strip bends


The lower metal will expand more, causing the strip to bend upwards

$$
\Delta V=V \beta \Delta T
$$

## Thermal Behaviour of Matter - Summary

- Ideal gas law

$$
P V=N k_{B} T \quad P V=n R T
$$

- Gas may be analysed in terms of molecular motion

$$
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T
$$

- Latent heat of transformation of phases

$$
Q=m L
$$

- Coefficients of thermal expansion

$$
\frac{\Delta L}{L}=\alpha \Delta T \quad \frac{\Delta V}{V}=\beta \Delta T
$$


[^0]:    *Temperature range $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ except as noted.

[^1]:    *Temperature range $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

